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Summary

A unified theory of secondary instability in wall-bound shear flows has been developed.
This theory rests on Floquet systems of stability equations and permits classification and
quantitative analysis of different modes of secondary instability in the three-dimensional
stage of laminar-turbulent transition. The catalogue of solutions is consistent with observa-
tions and predicts other phenomena that have not been identified in experiments. The.
theoretical results have been used to reproduce patterns in flow visualizations by computer
animation. Analysis of the energy balance has shown a feedback loop between mean-flow,
two-dimensional, and three-dimensional disturbances that is considered key to the process
of self-sustained transition. Various techniques have been developed to investigate details
of the nonlinear three-dimensional processes involved in this feedback loop.
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1. Research Objectives

The project "On the Three-Dimensional Structure of Boundary Layers in Transition
to Turbulence" under AFOSR Contract F49620-84-K-0002 was originally planned as a joint
theoretical - experimental effort with Thorwald Herbert and William S. Saric as principal
investigators. After Dr. Saric left VPI & SU in Summer 1984, the contract was split, the
research plan was rearranged, and most of the theoretical work remained at VPI & SU with
Th. Herbert as principal investigator. The working period for this contract was 02/01/84 -
01/31/87 with an extension until 02/28/87.

A detailed description of the research objectives has been given in sections 2 and 3 of
the original proposal. Overall, the work aimed at gaining insight into the intricate process
of laminar-turbulent transition in plane shear flows, especially in boundary layers. Our
research goals during the three-year period of the contract were comprised in four topics
that are detailed in the following:

(1) Transition mechanisms

(1.1) Analysis of fundamental (peak-valley splitting) modes in boundary layers

(1.2) Analysis of combination resonance in Poiseuille flow and boundary-layer flow

(1.3) Development of weakly nonlinear models of subharmonic instability and
evaluation of their utility

(1.4) Analysis of energy balance and vorticity dynamics for deeper understanding
of transition and design of improved transition models

(1.5) Analysis of the evolution of time-periodic and isolated wave packets in a
weakly nonlinear framework.

(2) Three-dimensional flow field

(2.1) Determine the amplitude levels for significant nonlinear interaction of three-
dimensional disturbances with the modulated basic flow

(2.2) Calculation of the three-dimensional flow field, in particular the formation of
high-shear layers during peak-valley splitting

(2.3) Analysis of the scales of the three-dimensional flow and of approximations
for tertiary high-frequency instability

(2.4)* Reproduction of smoke-flow visualizations by computer animation of theoret-
ical data

(3) Effect of free-stream disturbances

(3.1) Development of asymptotic or computational models for the entrainment of
sound and exterior disturbances into the leading-edge flow for given contour
and pressure distribution

w (3.2) Relation between phenomena in the viscous sublayer of turbulent flows and
phenomena in pretransitional flows; analysis of scales and simple models of
the feedback loops

(4) Nonlinear stages of three-dimensional development

(4.1) Analysis of three-dimensional equilibrium states originating from subhar-
monic instability in plane Poiseuille flow
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(4.2) Analysis of three-dimensional states associated with peak-valley splitting and
a longitudinal vortex system

(4.3) Tracing of the most dangerous route (4.1 or 4.2) for a general parabolic velo-
city distribution

(4.4) Discussion of the relevance of these motions for the forced situation in the
laminar sublayer of turbulent flows

The third topic, the study (3) of the effect of free-stream disturbances, esp,-cially the
entrainment of exterior disturbances into the flow around the leading edge of a flat plate
was adopted by W. S. Saric. This computational work is conducted at Arizona State
University while the experimental facilities are under development. The flow visualizations
(2.4) were not part of the original proposal. This topic has been included since the still pic-
tures of laboratory experiments are difficult to interpret and usually show a mixture of
different modes.

2. Research Achievements

Since the first description of the three-dimensional nature of boundary layer transition
by Klebanoff et al. (1962), the explanation of the observed three-dimensional phenomena
has been a challenge to theoreticians and stimulated the study of numerous weakly non-
linear (low order perturbation) models. Failure of these studies to provide convincing expla-
nation and quantitative characterization of the observed phenomena can be caused by
either (i) too low order of truncation, (ii) use of perturbation series outside their radii of
convergence, or (iii) inappropriate choice of the primary instability modes involved in the
model. The formulation of a rational perturbation approach (Herbert 1980, 1983a) allowed
analysis of high-order series and led to the conclusion that previous and new models (Her-
bert & Morkovin 1980) of resonant or non-resonant interactions are insufficient for describ-
ing the observations of Klebanoff et al. (1962).

Guided by a revised interpretation of the observations, Herbert & Morkovin (1980)
suggested that three-dimensional disturbances originate from parametric excitation in the
streamwise periodic flow created by the primary TS wave. Simultaneously, Orszag &
Patera (1981) found exponential growth of small 3D disturbances in transition simulations

N ,of channel flow and attributed this fact to the activity of a linear stability mechanism.
Consequently, a theory of linear secondary instability based on Floquet systems of distur-
bance equations was formulated and first applied for studying three-dimensional distur-
bances in streamwise periodic equilibrium states in a plane channel (Orszag & Patera 1981,
Herbert 1981, 1983b). There are four main results of this work: (i) Three-dimensional
secondary instability can lead to different types of disturbances. Primary resonance with
the TS wave produces peak-valley splitting as the TS amplitude exceeds some threshold.

i Subharmonic resonance can occur at even smaller amplitudes. (ii) Calculated disturbance
velocities and growth rates are consistent with experiments. Three-dimensional modes grow
on a fast convective time scale, typically by a factor of 100 within 5 cycles of the TS wave.

V (iii) Secondary instability originates from the redistribution of spanwise vorticity into

streamwise periodic lumps near the critical layer. Growth of three-dimensional modes arises
from combined vortex tilting and stretching. (iv) Analysis of the limit TS amplitude
A -0 reveals the intricate connection between modes of primary and secondary

'4 'a- . ,
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instability. This provides for the first time a rational means for evaluating existing and con-
structing new models of weakly nonlinear interactions.

Encouraged by the results for channel flow and guided by the nature of the secondary

instability mechanism, Herbert (1983c) introduced approximations which permit application
of the theory to the full class of classical sttbility problems, especially boundary layers. A
comprehensive survey on the development and application of this approach has been given
as an invited lecture at the Tenth U. S. National Congress of Applied Mechanics, June 16-
20, 1986, Austin, Texas. For further information, Appendix A contains a copy of this
paper. The systematic study of the various types of three-dimensional disturbances and
review of experimental information has led to a broader and revised picture of transition in
boundary layers. Many of these views are summarized in an article to be published in
Annual Reviews of Fluid Mechanics, Vol. 20, 1988. A preprint of this article is provided as
Appendix B. Here, we restrict discussion only to the main conclusions and some incomplete
results.

The Floquet approach explains the linear secondary instability with respect to 3D dis-
turbances as originating from parametric instability of a plane basic flow that is periodic in
space and time. Different classes of modes are associated with different types of resonance:
primary resonance results in peak-valley splitting modes; principal parametric resonance
causes subharmonic modes of instability; both these classes can be considered special cases
of combination resonance; vortex pairing is a degenerate (two- dimensional) case of subhar-
monic instability.

The theory is capable of quantitatively predicting the temporal growth rates and the
spatial disturbance field up to the stages immediately preceding breakdown and transition.
Comparison with the experiments of Kachanov & Levchenko (1984) has verified the results
on the subharmonic instability in the Blasius flow (Herbert 1984a). Comparison with the
experiments of Klebanoff et. al. (1962) has shown that the theory explains all the essential
qualitative and quantitative aspects of peak-valley splitting in the Blasius flow (Herbert
1985). A detailed comparison with more recent measurements of peak-valley splitting by
Cornelius (1985) will be published in the near future. Nishioka & Asai (1984) found essen-
tial agreement of their measurements on peak-valley splitting in plane Poiseuille flow with
our results, even at unexpectedly large disturbance amplitudes. Recent results using the
spatial (instead of the temporal) growth concept indicate further improvements in the pred-
iction of growth rates, especially for boundary layers in adverse pressure gradients.

The development of the Floquet theory of secondary instability arising from the
growth of TS waves in shear flows can well be considered a major breakthrough in hydro-
dynamic stability theory. Our work, although yet incompletely published, has found

P widespread attention. The formal classification of phenomena has provided an ordering
scheme for virtually inconsistent observations. The explanation of Klebanoff's experimental
results was overdue. Most important for practical purpose, however, seems to be the capa-
bility of predicting the growth rates for the various modes of secondary instability. Given
the disturbance background, e.g. in a boundary layer, the amplitude of a specific distur-
bance as it grows in time or in the streamwise direction can be calculated. Experiments
show that, as this amplitude reaches a certain level, the secondary disturbance takes over

and shortly causes breakdown. Therefore, the prediction of breakdown is a matter of
developing an empirical or theoretical measure for this critical amplitude level.

4P
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The close relation between the amplitude level for self-sustained growth of secondary
disturbances and breakdown originates from the vortical nature of the secondary instability
mechanisms. At sufficiently large amplitude, the primary TS-wave produces an array of
vorticity concentrations near the critical layer. Bending, tilting, and stretching of these dis-
tributed vortices in regions of different streamwise velocity causes the strong growth of
secondary disturbances on a convective (rather than viscous) time scale (Orszag & Patera
1983). As another consequence, this strong secondary instability can be considered a gen-
eric phenomenon in flows with primary TS-instability.

In a linear framework, secondary instability leads a parasitic life on the TS waves.
Secondary modes may grow but will harmlessly decay as the vital vorticity concentrations
fade away. However, the strong growth leads rapidly to three-dimensional amplitudes large
enough to affect the two-dimensional wave development. In fact, the nonlinear self-
interaction of the 3D mode may reproduce a vorticity concentration that sustains its
growth. This process is key to the low subcritical transition Reynolds numbers in plane
Poiseuille flow (and probably other closed flows) as well as to the self-sustained transition in
boundary layers.

We have studied the nonlinear processes associated with the rapid growth of vortical
disturbances on the basis of both the energy equation and the momentum equations. The
analysis of the energy transfer between mean flow, TS wave, and 3D disturbances has been
conducted first for plane Poiseuille flow (Croswell 1985, Herbert 1986a) and is currently
adapted to boundary-layer flows. Although our approach differs in various aspects from
Orszag & Patera's, we were led to essentially the same conclusions on the highly localized
energy transfer from the mean flow into the 3D field, the close relation between areas of
concentrated vorticity and strong energy transfer, and the catalytic role of the TS wave in
this process. Beyond the concentrations in the plane of the mean flow, we also identify
highly localized regions of strong energy transfer in the plane normal to the mean flow at
those locations where the deflection of the spanwise vortex tubes is strongest. We also asso-
ciate the areas of energy transfer with the symmetries of the various peak-valley splitting
and subharmonic modes.

Analysis of the global energy transfer over a domain formed by the channel walls and
the streamwise and spanwise wavelengths of the 3D disturbances reveals on one hand the
different scale (convective rather than viscous) of the secondary instability, on the other

Shand an illuminating distribution of the transfer terms. At realistic amplitudes, typically
60% of the energy received from the mean flow provide the growth of the 3D mode, 30/o
are dissipated, while 10% are transferred into the 2D field. Whereas this loss is of minor
importance for the 3D disturbance, the gain for the 2D field is considerable and may boost
the growth or easily overweigh the (viscous) decay of the TS wave. In fact, the energy
transfer from the 3D into the 2D field can be considered responsible for the observed ulti-
mate growth of the 2D wave on a convective scale as the 3D wave attains a sufficiently high

* amplitude. Further considered the catalytic role of the 2D wave for the 3D growth, this
energy transfer appears to be key to the feedback loop that causes self-sustained growth of
the later stage of transition. We currently analyze this hypothesis for the Blasius boundary

layer where some limited experimental information is available.

In addition to using the energy equation, we have pursued various approaches of solv-
N ing the equations of motion. The initial attempt to study the nonlinear evolution of the 3D

field in the boundary layer with perturbation methods applied to improved models of
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combined primary models was largely unsuccessful. Similar experience has been reported
by Nayfeh (1985) with respect to the linear secondary instability. This work has clearly
shown the important role of Squire modes in the interaction indicated by dominating values
of their interaction coefficients. It has not become clear, however, whether the overall
failure of this approach is due to certain modes that may be missing in the model or due to
lacking convergence of the series. As another suspect, the role of the continuous spectrum
inherent to the primary stability equations in semi-infinite domains is unknown. In view of
the numerous modes involved, a continuation of the approach to sufficiently high order for
a series analysis is illusionary. The rather intricate analytical connections between
numerous modes at extremely small amplitudes observed in the (linear) Floquet analysis
(Herbert 1983) may well indicate a convergence problem of the weakly nonlinear method.

A more successful perturbation approach has been developed exploiting the fact that
the interactions between 3D primary modes in earlier models are comprised in the modes of
secondary instability readily available from Floquet analysis. As a simple case, we have
developed the formulation and the numerical tools for studying the nonlinear development
of a single (subharmonic or peak-valley splitting) mode of secondary instability up to rea-
sonably high order. The most tedious task in this approach is the verification of the proper
function of the computer programs. Surprisingly, the expansion in the spanwise direction is
formally very similar to the expansion for 2D primary modes in the streamwise direction.
The account for the streamwise periodic structure of the 3D field, however, is a non-trivial
step that complicates formalism and computer programs and requires major computational
efforts.

As a result of the expansion in the amplitude of a single secondary mode, we obtain at
second order a modification of the mean flow, a contribution to the 2D fluctuation field, a
spanwise periodic distortion of the mean flow, and the first harmonic of the 3D disturbance
which is periodic in the streamwise and spanwise directions. Resonance with the 2D wave
is not incorporated in the single-mode expansion. At third order, we obtain a Landau con-
stant that accounts for those nonlinear effects on the growth rate of the 3D mode that
directly originate from the 3D-3D interaction. The indirect effects of the modified mean
flow on the TS amplitude growth, and through modification of the 2D wave field can be

Restimated a posteriori. It is not unexpected that the modifications of the planar field are
especially strong in the neighborhood of the critical layer where the secondary modes exhi-
bit maximum rms fluctuation. A first report on the formalism and results of this single-
mode expansion has been given by Crouch & Herbert (1986).

A more complete model of combined 2D-3D and 3D-3D interaction is currently
developed. In order to verify formulation and computer programs, we have recently imple-
mented the symbolic manipulator Macsyma. The amplitude equations for this interaction
model provide the essential coupling terms at second order. Although formally equivalent
to the equations obtained from energy analysis, these amplitude equations provide more

0 accurate information since they incorporate the change in the spatial structure of the flow
field. In the a posteriori energy analysis, these changes cannot be taken into account.

Prior to the availability of detailed results on the nonlinear development, we have stu-
died the three-dimensional flow field for subharmonic, fundamental, and combination
modes. Velocity and vorticity distributions compare favorably with the scarce experimental
data base. Since recent experimental work has emphasized the visualization of the 3D stage
of transition, we have developed the tools for tracing path lines and for displaying the

.9%

SA



-r

C - 7-

temporal development of time lines on a high-resolution work station. The development
due to subharmonic secondary instability has been recorded in a 8 mm movie. This movie
shows for the first time in detail the formation of the often observed pattern of TS waves
and the rapid evolution of the staggered structure of A vortices after the subharmonic dis-
turbance has grown to sufficient amplitude. A second movie has been produced for visuali-

0- zation of other modes, especially those arising from combination resonance, and to demon-
strate the dependence of the pictures on the location of the smoke wire.

For the analysis of three-dimensional equilibrium motions in plane Poiseuille flow, we
have mapped the bifurcation points in terms of Reynolds number, wavenumber, and TS-
amplitude. The nonlinear algebraic system representing the equations of motion for
interacting two-dimensional and three-dimensional modes has been formulated and coded
for the subharmonic and fundamental cases. The application of the programs has been

* held up, however, by the lack of convergence of the Newton method for solving the non-
linear equations. The suspicion of errors in the code turned out to be unjustified. The rea-
son is the occurrence of a multiple (double) zero at the bifurcation point. Present work is
directed toward overcoming this problem by use of improved starting solutions which may

* lead to local convergence at sufficient distance from the bifurcation point. Such improved
solutions can be constructed by use of the perturbation method for 2D-3D interaction as
soon as it has been verified and adapted to plane Poiseuille flow. As an alternative, we
attempt to implement the extended Newton method that covers the case of double zer6s.

3. Personnel

During the working period, the following personnel were partly supported under Con-
tract F49620-84-K-0002:

Thorwald Herbert, Professor, Principal Investigator
Alan Haddow, Assistant Professor (visiting)
German Santos, Graduate Student (Ph.D. level)

Jeffrey Crouch, Graduate Student (Ph.D. level)
Joseph Croswell, Graduate Student (M.S. level)

Fabio Bertolotti, Graduate Student (M.S. level)
Charlotte R. Hawley, Research Specialist
Vineet Mehta, Undergraduate Student (hourly)

German Santos developed the concept of combination resonance for boundary layers
and studied the application to plane shear flows. He also developed the numerical tools to

istudy secondary instability in parallel flows in an infinite domain (mixing layer, wake). He
will receive his degree in 1987.

Jeff Crouch developed formulation and computer programs for an innovative perturba-
U tion analysis of nonlinear secondary instability. He will receive his degree in 1987/88.

Joseph Croswell developed the formalism for the study of the energy balance and
energy transfer between mean flow, primary and secondary disturbances. He applied this
formalism to plane Poiseuille flow. He received the M.S. degree in Engineering Mechanics in
July 1985.

Irk.
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Fabio Bertolotti was previously involved in research sponsored by the Office of Naval
Research. He performed an analysis of spatially growing subharmonic modes in boundary
layers with pressure gradients and studied the relation between secondary instability and
separation. After receiving his M.S. in Engineering Science in June 1985, he designed and
built the hardware and wrote a software system for computer animation of unstable
boundary-layer flows on Apollo workstations. After a one-year work period in automobile
aerodynamics with Pininfarina in Italy, he joined the Ph.D. program at VPI & SU in Sep-
tember 1986. He produced a movie on 'smoke-wire' visualizations of various routes to tran-
sition and works on a new concept for stability analysis of nonparallel flows.

'q.

4. Publications

The following publications, reports and communications acknowledge the support by
AFOSR:

(1) "On the Early Stages of K-Breakdown in the Blasius Boundary Layer," by Th. Her-
V" bert, Bull. Amer. Phys. Soc. 29, p. 1540 (1984).

(2) "Secondary Instability of Plane Shear Flows - Theory and Application," by Th. Her-
bert, in: Laminar-Turbulent Transition, (Ed.) V. V. Kozlov, p. 9-21, Berlin - Heidel-
berg - New York: Springer-Verlag (1985).

(3) "Three-Dimensional Phenomena in the Transitional Flat-Plate Boundary Layer," by
Th. Herbert, AIA.A Paper No. 85-0489 (1985).

(4) "Aspects of Secondary Instability in Transition Management," by Th. Herbert,
Abstract, AIAA Paper No. 85-0563 (1985).

(5) "On the Energetics of Primary and Secondary Instabilities in Plane Poiseuille Flow,"
by J. W. Croswell, M.S. Thesis, VPI & SU (1985).

(6) "The Subharmonic Route to Transition - An Animated Theory," by Th. Herbert and
F. P. Bertolotti, 16 mm Movie, 8 min, VPI & SU (1985).

(7) "Floquet Analysis of Secondary Instability in Shear Flows," by Th. Herbert. F. P. Ber-
tolotti, and G. R. Santos, in: Stability of Time Dependent and Spatially Varying
Flows, (Eds.) D. L. Dwoyer and M. Y. Hussaini, pp. 43-57, Springer-Verlag (1985).

(8) "Vortical Mechanisms in Shear Flow Transition," Proc. Euromech 199 Colloquium
"Direct and Large Eddy Simulation of Turbulent Flows," Munich, Germany, 1985.
(Eds.) U. Schumann and R. Friedrich, Notes on Numerical Fluid Mechanics, Vol. 15.
pp. 19-36, Braunschweig: Vieweg (1986).

.() "Analysis of Secondary Instability in Boundary Layers," Proc. Tenth U. S. National
Congress of Applied Mechanics, Austin, Texas (1986). (Ed.) J. Lamb, pp. 445-456
ASME (1986).

* (10) "Combination Resonance in Boundary Layers," by G. R. Santos and Th. Herbert,
Bull. Amer. Phys. Soc. 31, p. 1718 (1986).

(11) "Perturbation Analysis of Nonlinear Secondary Instability in Boundary Layers," by J.
D. Crouch and Th. Herbert, Bull. Amer. Phys. Soc. 31, p. 1718 (1986).

(12) "Early Stages of Boundary-Layer Transition - An Animated Theory," by F. P. Berto-
lotti, G. R. Santos and Th. Herbert, 16 mm Movie, 8 min, Virginia Polytechnic Insti-
tute and State University, Blacksburg, Virginia (1986).

NN
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(13) "Instability Mechanisms in Shear Flow Transition," by B. J. Bayly, S. A. Orszag, and
Th. Herbert, invited contribution to Ann. Rev. Fluid Mech. 20 (1988)

(14) "Secondary Instability of Boundary Layers," by Th. Herbert, invited contribution to
Ann. Rev. Fluid Mech. 20 (1988)

The following papers reporting results obtained under the current support are in

preparation:

(15) "Energetics of Secondary Instability in Plane Poiseuille Flow," by Th. Herbert and J.
W. Croswell, to be submitted to J. Fluid Mech.

(16) "The Peak-Valley-Splitting Route to Transition in Boundary Layers," by Th. Herbert,
to be submitted to AIAA Journal.

(17) "Vorticity Field and Energy Balance for Three-Dimensional Disturbances in Boundary
Layers," by Th. Herbert, to be submitted to AIAA Journal.

(18) "Combination Resonance in Unstable Boundary Layers," by Th. Herbert, G. R. San-
tos and F. P. Bertolotti, to be submitted to AIAA Journal.

(19) "Weakly Nonlinear Analysis of Secondary Instability in the Blasius Boundary Layer,"
by Th. Herbert and J. D. Crouch, to be submitted to J. Fluid Mech.

(20) "A Study on Visualizations of Boundary-Layer Transition," by F. P. Bertolotti and
Th. Herbert, to be submitted to Exp. Fluids.

5. Technical Presentations

The following papers were presented at meetings, conferences and seminars:

(1) "Three-Dimensional Phenomena in the Transitional Flat-Plate Boundary Layer," by
Th. Herbert, AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada (Jan. 1985).

(2) "Aspects of Secondary Instability in Transition Management," by Th. Herbert, AIAA
Shear Flow Control Conference, Boulder, Colorado (March 1985).

(3) "Secondary Instability of Boundary Layers," by Th. Herbert, Department of Mechani-
cal and Aerospace Engineering, Arizona State University, Tempe, Arizona (March
1985).

(4) "Three-Dimensional Instabilities of Boundary Layers," by Th. Herbert, School of
Engineering, Georgia Institute of Technology, Atlanta, Georgia (May 1985).

(5) "Effect of Pressure Gradients on the Growth of Subharmonic Disturbances in Boun-
dary Layers," by Th. Herbert and F. P. Bertolotti, Conference on Low Reynolds
Number Aerodynamics, Notre Dame, Indiana (June 1985).

(6) "Three-Dimensional Phenomena in Boundary Layer Transition," by Th. Herbert,
Department of Mechanical and Aerospace Engineering, Illinois Institute of Technology,
Chicago, Illinois (June 1985).

(7) "Floquet Analysis of Secondary Instability in Shear Flows," by Th. Herbert, F. P. Ber-
tolotti and G. R. Santos, ICASE/NASA Workshop on Stability of Time-Dependent
and Spatially Varying Flows, Hampton, Virginia (Aug. 1985).

(8) "Vortical Mechanisms in Shear-Flow Transition," by Th. Herbert, Euromech Collo-

quium 199 on Direct and Large Eddy Simulation of Turbulent Flow, Munich,

-t 4



Germany (Sept. 1985).

(9) "Three-Dimensional Instability of Boundary Layers," by Th. Herbert, University of
Virginia, Charlottesville, Virginia (Oct. 1985).

(10) "Three-Dimensional Equilibrium States in Plane Channel Flow," by Th. Herbert, 22nd
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ANALYSIS OF SECONDARY INSTABILITIES IN BOUNDARY LAYERS

T. Herbert
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

Abstract (3) Onset of three-dimensionality on a spanwise scale

The practical need for prediction and ultimately control similar to the TS wavelength. Formation of peaks

of laminar-turbulent transition requires deeper under- and valleys, i.e. spanwise alternating regions of

* quantitative analysis of the transition process beyond taneous occurrence of longitudinal vortices.

the onset of primary instability with respect to TS (4) Rapid growth of the three-dimensionality (peak-
waves. Motivated by this need, we have developed and valley splitting). Formation of inflectional instan-

applied a linear theory of secondary instability with taneous velocity profiles with embedded high-shear

respect to three-dimensional disturbances. This theory layers at the peak positions.
5.- permits formal classification and quantitative study of (5) Occurrence of small-scale, high-frequency velocity

the variety of observed three-dimensional phenomena fluctuations (spikes) in the neighborhood of the

that provide the link between TS waves and transition. high-shear layers

The secondary instability originates from the dynamics
of streamwise periodic vorticity concentrations subject (6) Onset of irregular motion, breakdown of the lam-

to the surrounding shear flow. We give a survey on the

key elements that guided the development of the theory Two remarks are in order on this picture of tran-

and indicate the underlying mathematical concepts. sition. First, this sequence of events relates only to the

Various classes of three-dimensional disturbances are particular experimental procedure that raises the level

identified. Some numerical results are given to charac- of two-dimensional disturbances of given frequency

terize the parametric dependence of the secondary ins- above the noisy background by using a vibrating rib-

tability. A comparison with hot-wire data is made. The bon. Second. this picture is incomplete as will be dis-

patterns of subharmonic modes in flow visualizations cussed below. Nevertheless, this sequence of events is

* are reproduced by omputer-animation of the theoreti- one possible route to transition and appears accessible

cal data. to analysis. In fact, this picture has stimulated and
guided various theoretical and computational work.

1. Introduction The first step of linear (primary) instability can

Early experimental studies using hot-wire be predicted using the Orr-Sommerfeld equation for

. anemometers 1, 2 or flow visualization techniques 3. 4 parallel flows. Accounting for the streamwise growth of

have established a rather detailed picture of the phases the boundary layer 5 slightly modifies trhe results at, low

of transition. In short, the sequence of events is as fol- Reynolds number and improves the aigreement with the

lows: experimental data of Schubauer & Skramstad.6 The
characteristics of finite-amplitude TS waves in step 2

(I) Onset of instability with respect to essentially have been studied both with perturbation methods 7

two-dimensional TS waves, and by numerically solving the Navier-Stokes equa-

(2) Slow growth of the amplitude of the TS waves to a tions.A At the low amplitudes of concern, however,

finite value, typically l in terms of the stream- there is little effect of nonlinearity on the disturbance

wise rms fluctuation. growth or velocity distribution.
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r The true challenges are the qualitative changes extracted with relative ease which is not true of the
from two-dimensional to three-dimensional motion in data obtained in laboratory experiments.
step 3 and from large to small scales in step 5. Origi- Motivated by new results from the research group
nally, this latter phenomenon has been attributed to a of the USSR Academy of Sciences in Novosibirsk, the
secondary instability mechanism. In fact, stability exchange of ideas at the AGARD Meeting in
analysis of the measured instantaneous velocity profiles Copenhagen, 1977, and the lUTAM Symposium on
indicates that the occurrence of higher-frequency distur- Laminar-Turbulent Transition in Stuttgart, 1979, a new
bances can be understood as a vortical instability of the generation of boundary-layer experiments was con-

localized high-shear layers. . 10, 11 ducted. Hot-wire analysis 2 30, 31,32 and flow visuali-

The development of three-dimensionality in step 3 zations 33 led to a more detailed and extended picture
stimulated various theoretical analyses 12, 13, 14, 15, 16 of the trarsition process. Perhaps the most striking
using weakly nonlinear models. In some of these observation was the non-uniqueness of step 3 and the
models, the spanwise wavelength of the peak-valley subsequent events. Depending on minute parameter
splitting appears as a parameter; other models are changes (e.g. the level of ribbon vibration at otherwise
based on the concept of resonant wave interaction at fixed conditions), peak-valley splitting can change over
specific spanwise wavelength. The development in this into a subharmonic mode of three-dimensional develop-
field continued with more complex models of resonant ment. This mode can be clearly identified by a rela-
wave interactions 17 and non-resonant models involving tively broad peak at half the TS frequency in power
waves and longitudinal vortices. 18 However, neither of spectra of the streamwise velocity fluctuations. 34 Under
these weakly nonlinear theories was able to provide controlled conditions,3° clean subharmonic or combina-
satisfactory explanation and quantitative characteriza- tion resonance can be observed. The non-uniqueness
tion of the experimental facts. also extends to the spanwise wavelength of the three-

- For a variety of reasons, the experiments of dimensional phenomena 33 which was earlier believed to

Nishioka and co-workers 19, 20, 21 on transition in plane be a repeatable characteristic of the transition pro-

% channel flow are a milestone in transition research. cess'l,35
First, this strictly parallel flow allows a rather clean In parallel with the gathering of new observations,
mathematical treatment. Much pioneering work has Blackwelder 36 and Herbert & Morkovin 18 suggested an
been done on the nonlinear stability of this flow. This essential modification of the transition picture. Earlier,

. work, however, has been in conflict with the experimen- the occurrence of three-dimensionality in step 3 had
tal fact of low subcritical transition. Nishioka et al. been attributed to spanwise differential amplification of

• were the first to obtain laminar flow at supercritical TS waves, while the onset of spikes was considered as
Reynolds number and to verify the results of the linear arising from secondary instability. The revised picture

" stability analysis. At the same time, they verified the considers peak-valley splitting as the manifestation of a
methods used and the results obtained in studies of secondary instability. Herbert & Morkovin 18 suggested
nonlinear stability. Second, they found that traitsition that three-dimensional disturbances originate from
in channel flow follows the same steps as in boundary parametric excitation in the streamwise periodic flow
layers, and hence established channel flow as a proto- created by the finite-amplitude TS wave. Simultane-
type for transition analysis in wall-bound shear flows. ously, Orszag & Patera 25 observed exponential growth
Third, they performed hot-wire measurements beyond of small three-dimensional disturbances in their transi-
the occurrence of spikes and breakdown 22.23 and tion simulations in a plane channel and attributed this
extended the above picture. They showed that at fact to the activity of a new linear stability mechanism.
breakdown the flow exhibits all major characteristics of Subsequent work 25.37, 38 39 led to the formulation of a
turbulent flow, including the formation of a viscous theory of secondary instability for periodic equilibrium
sublayer, and bursts (at the TS frequency). motions in a plane channel based on Floquet systems.

The advance of computers and computational There are four main results of this work: (i)
methods has been a creeping revolution that allowed Three-dimensional secondary instability can lead to
simulations of transition, especially for channel flow different types of disturbances. Primary resonance with
24, 25, 26 under controlled conditions. Similar work for the IS wave produces peak-valley splitting as the TS
boundary layers 27, 28 suffers somewhat from the lack of amplitude exceeds some threshold. Subharmonic reso-

ideas to specify proper conditions for the outflow at the nance can occur at even smaller amplitudes. (ii) Calcu-
downstream end of the computational domain. There- lated disturbance velocities and growth rates are con-

fore, transition simulations for boundary layers usually sistent with experiments. Three-dimensional modes
consider the temporal development of the flow in a spa- grow on a fast convective time scale, typically by a fac-
tially periodic box, Surprisingly, computational and tor of 100 within 5 cycles of the TS wave. (iii) Secon-
experimental results ar, strikingly similar up to the dary instability originates from the redistribution of

stage where numerical resolution becomes instfficient. spanwise vorticity into stfreamwise periodic lumps near

6 The advantage of the nurmrical work is that the wealth the critical layer. Growth of three-dimensional modes

b of information concealed in tle computer output can be arises from combined vortex tilting and stretching (iv)
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Analysis of the limit TS amplitude A -- 0 reveals the measure for the maximum streamwise rms fluctuation
intricate connection between modes of primary and (usually denoted as u in). All quantities are nondimen-
secondary instability. This provides for the first time a sional using the outer velocity Uo and
rational means for evaluating existing, and constructing 6, (vL /Uoo)" /2 for reference, where L is the dis-
new models of weakly nonlinear interactions. tance from the leading edge. Consequently,

Encouraged by the results for channel flow, and R = (Uo L/u) 1 2  We change from the laboratory

guided by the nature of the secondary instability frame to a Galilean frame moving with the TS phase

mechanism, Herbert 40 introduced approximations velocity c, . In this frame, the basic flow satisfies

which permit application of the theory to the full class v-(X ,Y) v 2(z X ,y) , z X - c, t , (3)

of classical stability problems, especially boundary
layers. Application of this Floquet theory of secondary where X, = 27r/a, is the wavelength of the TS wave.

instability to the Blasius boundary-layer flow 41,42. 43 Obviously, this choice of the basic flow involves
provided results consistent and mostly in quantitative some approximations that can be considered a generali-
agreement with the work of Klebanoff and co-workers I zation of the parallel-flow approximation. The parallel-
and Cornelius 44 on peak-valley splitting and with the flow assumption extends the local conditions at some
results of Kachanov & Levchenko N, 30 on subharmonic streamwise position x 0 to the range - oc < x< o0. In
and combination resonance, our case, we neglect not only the small transverse velo-

In this paper, we briefly describe the underlying city and the streamwise variation of the boundary layer

concepts of the Floquet theory of secondary instability, profile, but moreover, the small (temporal or spatial)

From the general form of the disturbances we derive variation of the amplitude A , and the distortion of the

special classes of instability modes and relate their for- TS velocity profile by nonlinear effects. Justification

mal properties to the observations. Some numerical for these approximations will be given below.

results are given in order to characterize the parametric A look at the linear disturbance equations (1)
dependence of the secondary growth rates. A coin- indicates a qualitative difference between the cases
parison with hot-wire data on subharmonic instability A = 0 and A 4 0. In absence of the TS wave, equa-
and peak-valley splitting is made. The patteros of tions (1) form the basis of the classical theory of pri-
subharmonic modes in flow visualizations are repro- mary instability. Due to the independence of the basic
duced by computer-animation based on the theoretical flow of t, z, and z, the normal mode concept can be
data.4 5 applied with respect to these variables. After some

rearrangement, this leads to the Orr-Sommerfeld equa-

2. Formal Considerations tion for the velocity component v and to Squire's equa-

In our approach to secondary instability, we tion for the vorticity comqonent qj normal to the plate.

recognize in step 2 of the above described transition For A 3 0, we are faced with a system of par-
picture that the flow is no longer of the Blasius type tial differential equations with x-periodic coefficients.
but experiences a modulation by the finite-amplitude The normal mode concept can still be applied with
TS wave. In a coordinate system moving with the respect to z and t and three-dimensional disturbances
phase speed of this wave, the flow can be considered as can be written in the form
almost steady and streamwise periodic. We follow the
standard procedure of linear stability and decompose V3(X Y Z t e C V(X ,Y (4)

the velocity field v into a basic flow v 2 and distur- We consider the spanwise wave number 0 = 2r /X, as
bances v3 that are sufficiently small for linearization, real, whereas a - o, 4- i a. is in general complex.
Substitution into the Navier-Stokes equations and sub- The key step in the development of the theory of secon-
tracting the equations for the basic flow (which we .dary instability is the identification of classes and forms
assume to be identically satisfied) provides the linear of V(X ,y ). In essence, insight into the streamwise
stability equations structure of the disturbances can be gained from the

2 Floquet theory of ordinary differential equations.
V _ _)V3- (V2 7)V3 (V3" V)V2 -- V P3 Beyond the periodicity of the coefficients, we exploitKR

the fact that the physical solution must be real, and
V v 3  0 . () therefore any complex solution v 3 implies the existence

In general, the basic flow and its derivatives determine of a complex conjugate solution v3t . Moreover. the sys-

- the coefficients of the stability equations. In our case, tem of equations can be written in a form with real
we can write the basic flow in the form coefficients. In this case, Floquet theory suggests solu-

tions in the form
v 2 (z',Y ,t) : vo(y) A vi(z', ,t), (2) V( ,y) ' V(.r ,Y

.where v,= v 0(y) represents the Blasius flow, A the

amplitude of the periodic modulation, and v, a solution V(x 2X, ,y) .V(x ,y) , (5)

of the Orr-Sommerfeld equation for a given set of whore -, "7, i-y, is a characteristic exponent, and

parameters We normalize v, such that A is a direct
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V is periodic in z with wavelength 2X, . Hence, we spanwise periodic mean flow distortion (u0 ) and a longi-
can write v 3 in the form tudinal vortex system (vo, w0 ). The fact that this vor-

at, tex system is an integral part of the three-dimensional
V3  e Cm ()e (6) disturbance and grows simultaneously with the fluctuat-

- ing components is consistent with the observations of
where 6 = a, /2. The components of i. are governed peak-valley splitting. The aperiodic component is
by an infinite system of ordinary differential equations. absent from the subarmonic modes (8). These modes

Since the basic flow v 2 with wavenumber are doubly periodic with 2X, and X, , and invariant
a, = 26 provides coupling only between components under the translation (z, z) -. (z + X, , z + X, /2), a

v,, and _,' ± 2, this system splits into two separate sys- characteristic of the staggered pattern in visualizations
tems for even and odd m that describe two classes of of subharmonic modes. In frequency spectra from a

solutions laboratory-fixed probe, linear subharmonic modes pro-
duce peaks at odd multiples of the subharmonic fre-

= e t e " e (z ,y), quency but not at the fundamental frequency and its
harmonics.if i. ( ,,()e i ' "  (7) The occurrence of two complex quantities, a and

-y, in the eigenvalue problem for secondary disturbances
v, C ", Y , leads to an ambiguity similar to that associated with

(8) the Orr-Sommerfeld equation. Only two of the four
= (y " 8 real quantities a, a , ', - can be determined; theM odd

Tother two must be chosen. We have already identified
-. fThe periodic functions / and obviously satisfy - as the detuning parameter that controls the

if (z + X, y) if (z ,), wavenumber content of the disturbed flow in the
streamwise direction. In a similar way, a , is associated

i. (z + 2X1 ,y) v, (z y) (9) with the frequency content of the flow. The real parts

4 Therefore, we denote vf as the fundamental mode, a and ', on the other hand, govern the growth of
-. associated with primary resonance, and v, as the the disturbance with respect to t or r, respectively,

J.I "subarmonic mode, originating from principal and are of prime interest in an analysis of secondary
preirsaeinstability. It is important, however, to recognize thatparametric resonance. spatial growth of disturbances in the streamwise direc-

It is interesting to note that the two classes of tion relates to the laboratory frame x', not to the mov-
" -r"modes are analytically connected, since no restriction is infrm x.Inctnugthclsfcaonfmde

imposed on the value of -%. Replacing -1 in (7) by ing frame . In continuing the classification of modes
- -)' ±of secondary instability, we distinguish
Fourier series leads to an expression formally equivalent * Temporal (temporally growing) modes. In this case,
to (8). Nevertheless, it is convenient to distinguish the we assume -y, 0 and consider a as the eigenvalue.
two classes for the analysis of special cases as well as in The temporal growth rate is given by a,, while a ,
the numerical work. We also note that to within this can be interpreted as frequency shift with respect to
renumbering modes with -1 and -y ± i2k 6 are identical the TS frequency. Modes with a, = -y c, travel
for any positive integer k . Therefore, it is sufficient to synchronous with the basic flow, where -tj is the
consider I I < 6. It is convenient to introduce the given detuning with respect to the wave number.
following classification of modes: 9 Spatial (spatially growing) modes. Since spatial

* * Fundamental modes: eq. (7) with %, 0 growth is measured in the laboratory frame z , y ,
9 Fudamntalmods: e. () wih -i 0z , we rewrite* Subharmonic modes: eq. (8) with -y, 0 ,w r i

* Detuned fundamental modes: eq. (7) with >yj ;. 0 C e = e e (10)

* Detuned subarmonic modes: eq. (8) with -j -> 0 and choose a, = ', c, in order to suppress tem-

The rational behind this choice of notation is the poral growth effects. Hence, y, provides the spatial

practical need for using truncated Fourier series that do growth rate in the laboratory frame while -jj is ther .. shift in the strea mnwise wavenumber , Detuning with
not allow for renumbering, and the even or odd number
of Fourier modes in symmetrically truncated series for respect to the frequency is given by the value of
subharmonic and fundamental modes, respectively, as aj- -i c,. Only in the case c tuned spatial

will be discussed below, modes can - be considered the complex eigenvalue
of the problem. Due to the occurrence of both a,

The characteristics of the fundamental modes are and - in the detuning parameter, the analysis of
formally consistent with observations. The modes are detuned spatial modes is a rather intricate task. It• "" "(loubly periodic with wavelengths X, and , as the
doubly, pis of interest, though, since such modes have been
ordered pattern in the flow visualizations of Saric & observed by Kachanov & Levchenko.29',3

Thomas. -3 The aperiodic term v o in (7) represents a

'.
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In general. detuned modes are associated with After proper rearrangement, tile coefficient func-
combination resonance. If we consider for simplicity tions are governed by systems of equations with real
the temporally growing modes, this can be immediately coefficients. 46 The solution however is only real for real
seen when forming the physical solution that must be a. The case of real a a, is of particular interest
real. Since - - 0. the complex conjugate solution is since synchronization between basic flow and distur-
detuned by -, and consequently the physical solution bances offers an optimum chance for energy transfer,
contains wavenumbers n (i ± -, . Tile sum of suitable and the principal modes of subharmonic and fundamen-
pairs of wave numbers matches the TS wave uiumber. tal instability at larger amplitudes are indeed associated

with a real solution. Since the amplitude A appears
3. Numerical Aspects linear in the stability equations, real a(.4 ) enables an

The derivation of the equations for the Fourier inverse eigenvalue search for A (a), i.e. the search for

coelicients ,, in (7). (8) is a straightforward but tedi- the value of the amplitude that produces a given

ous matter. Simplifications of the equations arise for amplification rate. Similar conclusions can be drawn

the temporal tuned modes with I - 0. Moreover, the for spatially growing modes.

temporal eigenvalue aT appe',rs linear in these equa- Concerning the choice between temporal and spa-
tion, tial growth concept, the sit ation is analogue to the pri-

Primary and secondary stability problems are mary stability analysis. The temporal eigenvalue a

* numerically solved using a spectral collocation method appears linear in the equations. Therefore, spectra and

with Chebyshev polynomials. This method converts single eigenvalues can be obtained by standard pro-

the ordinary differential equations and boundary condi- cedures of linear algebra. In the spatial formulation,

tions into systems of algebraic equations. Ve prefer the eigenvalue -1 appears up to the fourth power.

the direct treatment of the boundary value problem Although methods exist to obtain spectra in this case,

over shooting methods since we maintain access to the required computations are rather demanding.

pectra of eigenvalues for temporally growing modes. Therefore, we have exploited the fact that neutral

The spectrum is extremely helpful for reliably identify- behavior is independent of the chosen growth concept.

. tg the most relevant modes in different regions of the Parameter combinations for neutral behavior, a, = 0,

mliti-dimensional parameter space and for untangling have been identified using the temporal concept. Start-

their analytical connections. ing from these points, the principal eigenvalue can be
traced using the spatial concept. The local procedure

For boundary layers, we obtain a finite domain by for spatial eigenvalues - rests on Newton iteration.
* an algebraic mapping V 31o Y0/(3 Y0) that Although this procedure is more costly than tracing
* transforms y 0, o, into Y -- 1, 0, respectively, temporal eigenvalues, it is more convenient for follow-

iThe parameter Y0 controls the density of collocation ing the downstream development of disturbances of
".* points in the neighborhood of the wall. Only odd Che- fixed dimensional frequency and spanwise wavelength,

byshev polynomials are applied such that the boundary as it occurs in experiments.
conditions for y - o_ are automatically satisfied. Typ-

ically, J 30 collocation points are used, and Y0 is 4. Results
chosen to place half of the points within the displace-
ment thickness of the boundary layer. For every (real In the following, we use the frequency parameter

or complex) function + (y) in (7), (8), 2J + 3 (real or F -- 106o, c, R, and b 10
3
.O/R in order to

complex) unknowns have to be included into the homo- specify three-dimensional disturbances of fixed dimen-

geneous system of algebraic equations. In view of the sional frequency and spanwise wavelength as they

size of the resulting systems, the truncation of the travel downstream. The key experiments provide

Fourier series is crucial for the numerical work. details on different aspects of secondary instability at
, different frequencies:

For subharmonic modes, the lowest possible trun-
cation is I m I < 1, which includes only I and '. F -- 58.8: hot-wire data on peak-valley splitting,

The lowest approximation for fundamental modes is Klebanoff et al.'

c i I < 2 and includes V 2, vO an(d . Detailed o F - 6.1.4: hot-wire data on peak-valley splitting,
numerical studies 43 have shown that the Fourier series Cornelius 44

converge indeed rapidly, and the lowest truncation pro- * F 83: flow-visualizations of various modes,
vides sufficient accuracy for any practical purpose. Saric & Thomas 33

The numerical work for tuned modes can be 0 F 124 hot-wire data on subharmonic and
further simplified by exploiting that any complex solu- combination resonance. Kachanov & Levchenko
tion vY implies a second solution vt. Moreover, only 29. 30
the square 32 of the spanwise wavenumber appears inthe" equat ions such that the results for ,3 and 3 are Figure I relates the localtion of the vibrating ribbon (or
identical wire) and the range of Reynolds numbers studied in

these .xperiments to the stability diagrai for Ila.sius

flow There is yet no set of hot-wire data available
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that would allow for a comparison of subharmonic and subharmonic or fundamental instability can be sum-
fundamental modes at fixed frequency. marized as follows:

0 The eigenvalue a is real, i.e. secondary mode and
I I I r TS wave are phase-locked and travel at the same

phase speed.
200 0 The growth rate a, is large in comparison with

the maximum growth rate of TS waves. Typi-

cally, secondary modes grow by two orders of
F magnitude within a few TS cycles.

F=124 * Instability, a, > 0, occurs in a broad band of
100 spanwise wave numbers.

83 * The growth rate a , increases with increasing TS

64.4 + amplitude A at otherwise fixed parameters.
5. • The growth rate a, increases with increasing

Reynolds number at otherwise fixed parameters.

The growth characteristics of subharmonic and
0 400 800 R 1200 fundamental modes are similar with the subhar-

monic being the most dangerous mode at low TS
Figure 1. Stability diagram for the Blasius boundary amplitude levels.
layer. The horizontal lines indicate the frequency and The latter fact is due to a characteristic difference
Reynolds number range in the experiments, between subharmonic and fundamental modes: funda-

Preference for lower frequencies in studies on mental instability, i.e. peak-valley splitting is a thres-
peak-valley splitting is likely due to the need for hold phenomenon and occurs only at sufficiently large
stronger TS growth and larger amplitudes. The ampli- TS amplitudes. Subharmonic instability, in contrast,
tude growth curves for TS waves at frequencies can occur at arbitrarily small TS amplitudes due to

F = 124 and 64.4 are given in figure 2, and show the resonance of Craik'sis wave triad. We note, however,
essentially larger amplitude ratio for the lower fre- that growth of secondary modes is only observable and
quency. The growth rate of secondary modes, however, leads only to transition if

depends on the absolute amplitude, and therefore the 0 The initial amplitude of the three-dimensional
curves in figure 2 become significant only for given ini- disturbance is sufficiently large.
tial amplitude A 0, or given disturbance background for 0 The conditions for growth persist for a sufficiently
that matter. long time or streamwise distance.

The role of the fetch for occurrence of subharmonic ins-
5" tability has been discussed by Saric & Thomas. 33 It also

seems that the frequent observation of peak-valley
splitting is due to favorization of longitudinal vorticity

In Adisturbances in wind tunnels with usually large contrac-
tion ratios. Computer simulations of boundary-layer
transition by Spalart & Yang 47 show that even at large

. -TS amplitudes pure peak-valley splitting cannot be
obtained from a uniform or random disturbance back-
ground.

0 X

4.1 Mechanism of Secondary Instability

F=124 83 58.8 The dramatic growth of three-dimensional distur-
bances at small TS amplitudes can be explained by the
parametric nature of the excitation. Guided by earlier

-3 -work on plane Poiseuille flow, 25 the rapid development
300 900 Q 1200 of secondary modes and the underlying physical

mechanism can also be understood from a close look at
Figure 2. Amplitude growth curves for T,' waves, the periodic basic flow.

A systematic discussion of the parametrical Figure 3 shows the streamlines of the flow (2) for

dependencies exceeds the scope of this paper. For ' - 124, R 606, and A - 0.02 in the wave-fixed
. relevant amplitudes. A , 0.005 say, the properties of coordinate system. The center of the cat's eve idi-

the principal. i.e. most amplified modes of temporal cates an extremum of the streamfunetion located just
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physical terms, the dynamics of such models has been
discussed in context with flow visualizations by Hama4 9

and Wortmann. 5 0 Wortmann considers the distributed

4 vortex tube in a two-dimensional flow as a salient
feature only in the presence of a spanwise, three-
dimensional disturbance. Owing to the surrounding

Y shear, any deformation of the tube initiates transport

processes which in turn enhance the deformation. He
concludes: "We have to expect a strong, exponential

2- growth of any three-dimensional perturbation once the
41. Reynolds number and wave amplitude of the Tollmien

wave establish a local vorticity peak of sufficient
strength near the critical layer " His arguments clearly

,----." indicate the necessity of combined vortex stretching
_0 __ and retrograde rotation of a bent vortex tube for the

exponential growth of three-dimensionality. This model
of peak-valley splitting has been verified by the formal

Figure 3. Streamlines of the periodic basic flow at and numerical analysis of the vorticity dynamics by
F 124, R = 606, and A 0.02. The marks at Orszag & Patera. 37 For a deeper understanding of the
y = 1.12 and y = 1.72 indicate the position of the various types of three-dimensional secondary instabil-

critical layer and the displacement thickness, respec- ity, however, it is crucial to recognize the streamwise
tively. periodic nature of the flow and to consider a vortex
oud tarray instead of a single vortex. The TS wavelength
Soutside the critical layer at yI . The associated vorti- X, introduces a new characteristic length scale into the
city contours are given in figure 4. Remarkable are the problem.
high levels of vorticity near the wall that diffuse into
the flow. The viscous effects, however, extend only to The vortical nature of the secondary instability

the neighborhood of the critical layer. For y > y, mechanism and the strong disturbance growth on a

streamlines and isolines of vorticity are nearly parallel, convective time scale ultimately justify the approxima-

indicating essentially inviscid flow.3 7 A weak extremum tions implied in the periodic basic flow (2). While non-

of vorticity occurs near the center of the cat's eye. linear effects may change primary stability characteris-

Therefore, the flow in this neighborhood resembles a tics through modification of the Reynolds stress, the

distributed, clockwise rotating vortex at the edge of the modification of the vorticity distribution at the ampli-

viscous layer near the wall. As the amplitude increases, tudes of concern is indeed negligible. Computations of

this vortex strengthens and moves further into the Fasel & Hama (personal communication) show that the

inviscid region. two-dimensional field essentially maintains the u' -

profile of a linear TS wave even at amplitudes of
A z 0.1. The weak nonparallelism of the boundary

- --- layer and the developing TS wave blurs some detail at

4 ~the onset of secondary instability but can be neglected
in the situation of practical interest where strong
growth of the three-dimensional modes occurs.

Y 4.2 Peak-Valley Splitting

In order to verify the theory of secondary instabil-
2 ity, a detailed analysis of fundamental modes has been

performed 4 2  for the experimental conditions of
'N' Klebanoff. 1 This analysis revealed two discrepancies.

First, the streamwise growth of the TS wave in the
experiment is not in agreement with the predictions of

0 linear stability theory. Dr. Klebanoff expressed that at

the time of this experiment emphasis was on a descrip-

tion of the nonlinear and three-dimensional phenomena

Figure 4 Isolines of vorticity for the periodic basic in transition, and no special effort was made to repro-

flow in figure 3. duce the linear TS characteristics that were already
verified in the work of Schubauer & Skramstad.6

The study of simplified theoretical mode., of a Second, our results indicate that subharmonic instabil-
single vortex in a viscous shear layer 48 , 10 provided ity should have prevailed in this experiment if the

some of the features of peak-valley splitting. In more background amplitudes for fundamental and subhar-
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monic modes were equal. In fact, the experiments were Disregarding this bias, the streamwise variation of the
conducted in a similar region with respect to the stabil- u '-values at peak and valley is in good qualitative
ity diagram in figure 1 as later studies 30 on subhar- agreement with the observation.
monic resonance. The experimental arrangement, how-
ever, especially the spanwise spacers on the plate sur-
face beneath the ribbon enhanced spanwise periodic .03
mean-flow variations and disturbances of the longitudi-
nal vortex type that directly participate in the resonant
mechanism of peak-valley splitting. Our theoretical

predictions are consistent with the results of recent u 0

computer simulations of transition in a temporally X

Y, growing boundary laver by Spalart & Yang. 47  (b)

G- X

.02r  0 
i

0 3 y 6

(a)" X X X~o ' Figure 6. Distribution of u' across the boundary layer
x X for F - 58 8, b 0 213, and R 960 Experiment:

ory (a) peak. (h) "alley.' x xxx I (o) peak.(x) valley Theory (a) peak,(b) valley.x x

x" iOnce the amplitudes .4 and B at a given stream-
-x .wise position are established, one can analyze the distri-

bution of the disturbance velocities in the spanwise
-% _ direction and normal to the plate Figure 6 shows the

0 .06 a .12 v '-distributions acro-s the boundary layer at peak and
4valley for conditions close to station B in the experi-

Figure 5. Growth rate of three-dimensional distur- ments A rmilar comparison at station (' indicates

bances as a function of the spanwise wavenumber 3 for that nonlinear hree-dimenional effects become

F = 58.8, R = 950, and .4 - 0.014 Theory (a) significant somemher,- ,,teen stations B and C. i e at",maximum peak at ii ttl hds of u' z 5' Essential
#.,. .subha m onic, (b) peak-valley splitting. C om putation ma i' e k a ; 2 t d s o i V s e ta

subharmonic, (x) peak-valley splitting, agreement bet~eei theoretical and experimental results(o) is also found for the spanwise component wo of the
The dependence of the temporal fundamental and mean longitudinal vortex system. as shown in figure 7,

subharmonic growth rates o, on the spanwise wave and for the mean flow at peak and valley
number 3 is shown in figure 5. The parameters are A new set of experimental data on peak-valley
chosen to match the experimental conditions.1 Theoret- splitting has been recently obtained by Cornehius.4 4 Not
ical and computational results are very similar and only are the theoretical characteristics of the TS wave
both show the stronger amplification of the subhar- reproduced but data are given for different spanwise
monic mode. The systematic quantitative differences wavenumbers We currently perform a theoretical
can be attributed to approximations contained in the analysis for the conditions of this experiment The
theoretical and computational work. results will be published elsewhere

Conversion of the temporal growth rates a, into
4.. spatial growth rates -y, - 1,c, and integration in 4 Subhsrmonle Instability
". the streamwise direction provides Detailed hot-wire data on the subharmonic route

B'R R to transition have been reported by Kachanov &
InB(R) 2 f f' dR (11) Ievchenko 2. - Their theoretical explanation of the

B 0  R0  " observations is closely tied to the studies of Craik's

for the amplitude ratio B B 0 of the three dimensional model by Volodin & Zelman St although the measured

disturbances, where B0  B(R 0 ) and Ro is the Rey- wave angle is way off the triad resonance conditions. A"; detailed analysis of their experimental conditions ba.sed

nolds number at the onset of secondary instability for a n cas
given valuie of A. Comparison of the amplitude ratios on the Floquet theory of secondary instability 41 has

r for fundamental and subharmonic modes indicates that shown that their results can be well understood in the

the initial amplitudes B 0 for peak-valley splitting in the light of the broad-band nature of secondary instability.

experiments I must have exceeded those for subhar- Figure 8 shows the variation of the subharmonic
monic instability by more than an order of magnitude. growth rate e, with the wavenumber parameter b for
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0
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00
10 400 500 600 R 700

Fd t hFigure 9. Amplitude growth with the Reynolds number
Figure 7. Normalized distribution of the spanwise com- R for (A) TS wave with A 0  0.0044, (B) subharmonic
ponent of the mean-flow disturbance across the boun- mode with B 0 = 1.86 X 10 - ', b 0.33. (-)
dary layer at F = 58.8, b = 0.243, and R 980. Theory, (o) experiment.

{-)Theory, (o) experiment at station C.
Te ,) pm asiSimultaneous integration of the spatial growth

rates of TS wave and subharmonic mode with initial

0.01 I , amplitudes matching the experimental conditions pro-
vides the data shown in figure 9 together with the

measurements. Except for the region of transient
behavior downstream of the ribbon in the experiment,

0the streamwise variation of the subharmonic amplitude

- is well predicted by the theory. Earlier results using

the temporal growth concept and the transformation-006 (11) led to very similar results. A detailed comparison

of spatial growth rates and transformed temporal rates
004, 54 indicates that the restrictions of Gaster's transforma-

0 tion do not apply to secondary instability. In fact, the

0 0 .4 close relation between temporal and spatial growth of
secondary disturbances could explain the successful
modeling of experiments on transition by temporal

Figure 8. Subharmonic growth rate o, as a function of computer simulations.
the wavenumber b for F = 124, R 1 = 606. Beyond the growth rates, tl-. theory also repro-

different TS amplitude levels at branch II for F = 124. duces the spatial structure of the subharmonic distur-
At small amplitudes, considerable growth rates are bances. At fixed distance from the plate, the spanwise

obtained in a narrow band of wave numbers that variation of the subharmonic rms fluctuation u '3 is pro-

centers around the wave number b = 0.18 for Craik portional to I cos3z I with 180* phase jumps at the

resonance. Instability at this rather small wavenumber positions where cosgz = 0. The distribution of u'3

is responsible for the selection of subharmonic distur- across the boundary layer is compared with experimen-

bances with large spanwise wavelength in experiments tal data in figure 10. Similar agreement is obtained for

at low TS amplitude levels.3 3 As the amplitude the phase of the disturbance velocity. Qualitative

increases, the band of dangerous wavenumbers extends agreement also extends to the small higher Fourier

to larger values of b , and the maximum of a , shifts to components of the subharnonic disturbance as shown

b - 0.28 at A = 0.01. The observed value b = 033 in figure 11. The deviation near y 0 is likely to ori-

is well within the range of strong instability. The sharp ginate from using the hot-wire probe very close to the

cutoff of the instability at low wavenumbers indicates wall.

that subharmonic instability in the Blasius flow always The experiments 30 with a natural, i.e. uncon-
leads to three-dimensionality. The two-dimensionlal trolled background of three-dimensional disturbances
mode of vortex pairing 52, 53 in inflectional mean flows exhibit no pure subharmonic resonance but a broad
occurs only at very large amplitudes of the periodic peak of spectral components in the neighborhood of the

modulation subharmonic frequency. The band width of this reso-
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Figure 10. Normalized u '-distribution of the subhar-

monic mode at F 124, R = 608, A = 0.0122, and Figure 12. Growth rate o, and frequency shift o,, for
b = 0.38. (-)Theory, (o) experiment. detuned modes at F = 124, R = 606, A = 0.01,

B = 0.33. Subharmonic and fundamental modes
1 correspond to -yj = 0 and - = 6, respectively.

cally change if the parameters are varied. Figure 12
also shows that only the tuned modes travel synchro-
nously with the TS wave, o, 0. Detuned modes are

.always associated with a low-frequency modulation of
,u' 3/2 the disturbance field. This result may be related to

- observations of low-frequency components and a slow
spanwise meandering of the disturbed flow in experi-
ments with a natural disturbance background.

56t/2
5. Conclusions

0 4 y a The Floquet theory of secondary instability
reveals that three-dimensional disturbances in the early

Figure 11. Normalized u '-distributions of the stbhar- stages of transition originate from parametric instabil-
monic components with 36/2 and 56/2 at F = 124, ity of ' basic flow that is periodic in space and time.
R = 606, A = 0.01, b = 0.33. (- ) Theory, The ." r shortcomings of weakly nonlinear models
(ox) experiment, and methods are circumvented and moreover means are

provided fox identifying relevant interactions for con-
nance was studied by exciting with the vibrating ribbon structing new models.
a second frequency which differed by up to 50% from

the subharmonic frequency. All cases produced strong The two distinct classes of subharmonic and fun-
combination resonance. This fact is consistent with the damental modes are found to be special cases of a gen-
results of our temporal analysis of detuned modes. The eralized class of secondary disturbances. The distur-resenls u ra onai fue modes. wth bances may grow in space or time. Comparison withexperimental data verifies the capability of the theory
wavenumbers between 6 and 26 i,. to predict growth rates and spatial disturbance field up

The growth rate a, exhibits a broad maximum to the stages immediately preceding breakdown and
near 6, such that detuned modes with 6 + yi, yj 4 0 transition.
experience almost the same growth as the subharmonic
mode. Reality of the physical solution requires the The mechanism of secondary instability involves
presence of the complex conjugate mode with combined tilting and stretching of an array of distri-

'L wapbuted vortices in a surrounding shear flow. By its vort-wavenumber 61- "fj and equal amplitude. In the ia aue h tg ftredmniia vlto

experiments, this fact is reflected by the appearance of ical nature, the stagl of three-dimensioinal evolution
two sharp spectral components of the same amplitude the TS instability and the fast convective scale of the
to both sides of the subharmonic frequency. The
growth rate of the fundamental mode is relatively small transition process.
for these parameters. However, the relation between
subharmonic and fundamental growth rate may drasti-
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* SECONDARY INSTABILITYOF BOUNDARY LAYERS

Thorwald Herbert

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061

1. INTRODUCTION

* The problem of transition from laminar to turbulent flow in viscous boundiry
layers is of great practical interest. The low skin friction coefficient of laminar
boundary layer flow is very attractive to those who lay out the engines or pay the
fuel for high-speed vehicles such as airplanes. However, the low mixing of fluid
properties such as chemical species, heat, or momentum may be intolerable for
others who design these engines or cope with the danger of separation in adverse
pressure gradients; they may clearly prefer a turbulent state of the flow. There-
fore, it would be highly desirable to at least predict, if not to control, whether

p." the flow under consideration is laminar or turbulent. The tremendous efforts of
decades of intense research, however, have been to little avail (Reshotko 1976).
The empirical e "-criterion is still the standard tool in engineering practice,

* although it is known to ignore essential ingredients of the physics of transition
and therefore may dangerously mislead if used beyond the supporting data base.
Numerical transition simulations have gained reliability in reproducing the transi-
tion process in sufficient detail to extract information unobtainable from labora-
tory experiments. However, the inherent assumptions of streamwise periodicity
and temporal growth of the boundary layer, in addition to the uncertainty of ini-
tial conditions prevent predicting transition in practice. Hence, theory still holds
an important place in identifying inherent mechanisms and structures of the
transition process and in explaining otherwise unintelligible observations. The
past decade saw some important progress of stability theory, slow or fast,
depending on the reader's judgement.

Because of the multitude of identified and concealed effects on the response of
the boundary layer to external forcing, the development of a general theory of
transition is yet an utopia. In noisy environments, e. g. in turbomachinery,

.
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turbulent boundary-layer flow develops virtually 'out of the blue'; the intermedi-
ate unsteady but still laminar motions accessible to stability analysis are
bypassed (Morkovin 1969). For large areas of practical interest such as vehicles
moving through the ocean or atmosphere, however, the environment is relatively
quiet'. i. e. the external disturbances produce only small spectral components

that match the scale of natural oscillations in the boundary layer. The detailed
mechanism of how the boundary layer ingests external acoustic waves or tur-
bulent fluctuations in a given geometry with inadvertent roughness and vibra-
tions of the solid boundary is denoted as receptivity. The study of this recep-
tivity issue has recently seen major progress (Goldstein 1985; Tam 1986) but will
not be addressed here. We concentrate on the situation after receptivity has
established a low level of disturbances inside the boundary layer. Initially, the
amplitudes cf all spectral components are assumed sufficiently small for neglect-
ing nonlinear modifications to the mean flow. In this case, the initial response of
the boundary layer to disturbances is governed by linear equations and can be
studied for isolated spectral components. \Ve further restrict our attention to the
simplest and best understood case of two-dimensional boundary layers along
essentially flat surfaces. The issues of centrifugal instability with respect to
G6rtler vortices, cross-flow instability in three-dimensional boundary layers, and
the wealth of interactions between the various modes of instability will be brie'fly
reviewed in section 3.3.

TS WAVES The initial stage of linear instability, henceforth denoted as primary
instability, can be roughly predicted using the Orr-Sommerfeld equation for tem-
porally growing disturbances in a locally parallel flow. Earlier doubts about vali-
dity and relevance of Tollmien's (1929) theoretical results for two-dimensional
traveling waves and the calculations of growth rates by Schlichting (1933) were

- swept away by the convincing experiments of Liepmann (1943) and Schubauer &
Skramstad (1943/1947). The disturbance background in the latter experiments
was kept extremely low and small two-dimensional oscillations were introduced
by a vibrating ribbon. It has become custom to use such a biased, or controlled

-,." background in experiment and computation. We should remain aware that these
studies are launched from a simplified model of the natural, i. e. uncontrolled and
unknown noise that causes instability and transition in real life. Although

Squire's (1933) transformation highlights the stronger instability of two-
dimensional waves, oblique waves or streamwise vortices cannot be considered
irrelevant. The natural background must be viewed as an irregular pattern of
three-dimensional wave packets with nonuniform spectral content. Moreover, the
study of isolated spectral components is only a valid concept as long as nonlinear
coupling can be ignored. 'With this in mind, we will adopt for the following the
controlled background and primary instability with respect to two-dimensional
traveling TS waves as the starting point for the theoretical analysis of the subse-
quent steps toward transition.

The quantitative prediction of growth rates and velocity distributions for TS
- ._4
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waves can be improved by considering spatially growing waves (Gaster 1962) and
accounting for the streamwise variation of the boundary layer (Bouthier 1973;
Gaster 1974; Saric & Nayfeh 1977). The distinction between temporal and spa-
tial concept slightly changes the total streamwise growth but provides a common
neutral curve. This curve (see Figure 8 below) outlines the region of instability in
the frequency-Reynolds number plane. Since the Reynolds number depends on
the distance from the leading edge, the neutral curve marks for each suitable fre-
quency the region of growth by two streamwise positions, branch I and branch II.
The nonparallelism moderately enlarges this region and enhances the growth,
which improves the agreement with experimental data.

The characteristics of finite-amplitude TS waves have been studied both with
perturbation methods (Itoh 1974: Herbert 1975) and by numerically solving the
Navier-Stokes equations (Fasel 1976). At the low amplitudes of concern, how-
ever, there is no remarkable effect of nonlinearity on disturbance growth or velo-
city distribution.

From a qualitative point of view, the most significant effect of TS waves is the
breakup of the uniform flow in streamwise direction characterized by the redistri-
bution of spanwise vorticity into periodic concentrations near the critical layer

" . where wave speed and mean velocity coincide. Downstream of branch I, the
* 7 waves grow on a slow viscous scale and decay once they pass branch II of ihe

neutral curve. The challenge then is to find out how these harmless two-
-- dimensional waves of large wavelength are related to the violent three-
-- dimensional, small-scale, and high-frequency motion that is commonly denoted as

turbulence. A partial answer to this question will occupy the main part of this
review.

One more remark seems to be in place. Research on transition has historically
been full of contradictions and sudden changes in views and trends that often
hampered progress (see the section "'Some Lessons from History", Morkovin
1969). Different reviews on shear flow stability may have little in common and a
zero-overlap of cited literature (e. g. Maslowe 1986). This curious fact illustrates
the many facets of the overall problem, the multitude of views, concepts and
methods, and the need to remain open-minded. It also grants me the right to
present my own view supported by a selection of references that I know is far
from complete.

A critical evaluation and interpretation of the 1983 state-of-the-art has been
given bv Nlorkovin (1983, 1985). The latter reference contains an extensive list of
related literature.

2. EARLY WORK AND RECENT PROGRESS

_ In retrospect. the tortuous route to our current perception is astonishing. For
-twenty years, conflicting yet correct experimental views of the early stages of

S,"transition were never clearly discerned nor reconciliated. Research by different
groups and with different techniques applied to the same problem were virtually

Le
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considered separate issues. Most theoretical work was guided by one single
study: the detailed hot-wire data of Klebanoff et al (1982) on "the three-
dimensional nature of boundary-layer instability". This paper is in fact very
appealing to the theoretician.

2.1 Early Observations

VISUALIZATION One of the first clear observations of the fate of growing
(axisymmetric) TS waves is the smoke photograph of the flow over an axisym-
metric body shown in Figure 1. This photograph was taken by F. N. M. Brown
at Notre Dame as early as 1957 but barely published in the open literature
(Mueller 1987, to appear). Later work in Brown's facility (Knapp & Roache
1968) revealed two clearly distinguished arrangements of the A-shaped smoke
accumulations (termed "trusses") which were characterized as staggered or
aligned in rows. In natural transition at zero pressure gradient, the staggered
arrangement dominated, while adverse pressure gradients, and even more forcing
by sound, favored the alignment in rows. Knapp & Roache concluded "that any
condition which causes the two-dimensional waves to amplify more slowly" will0 enhance the tendency toward the staggered arrangement. The qualitative
difference of the staggered pattern from the observations of Klebanoff et al (1982)

""5 was not recognized. The trusses were attributed to concentrated vorticity and
their development and breakdown discussed in some detail. The qualitative
changes in the A pattern by an adverse pressure gradient are like those recently
observed in the decelerating boundary layer on a flat plate (Gad-el-Hak et al
1984). More recent visualizations of staggered and aligned A's are shown in Fig-
ures 2 and 3, respectively.

The A-shaped structures were also observed by Hama et al (1957) in the flow
of water over a flat plate. A trip wire was used to create initial two-
dimensionality. Besides the flow photographs, the discussion of the dynamics of
vortex filaments in a shear flow is intriguing. In later work, Hama & Nutant

. (1963) used hydrogen bubbles in water to visualize what they denoted as A vor-
tices. The observations were supported by an analysis of the dynamics of a vor-
tex line under three-dimensional disturbances (Hama 1963). The A's were aligned
in all cases.

Using techniques similar to those of Hama & Nutant. a detailed phenomeno-
logical description of single trusses or A vortices was given in the movie
"Tollmien-Schlichting Waves and Beyond" by Wortmann (1977), although the

"- narrow water tunnel prevented identification of their arrangement. Similar to
Hama. Wortmann (1981) modeled the generation of A vortices in terms of com-
bined tilting and stretching of a disturbed vortex line in a surrounding shear flow.
The perception of the A's as vortices was strongly supported by the tendency of
the lighter-than-water bubbles to concentrate on the axis of a swirling flow.

S.- Although the relation between the A-shaped accumulations of fluid markers and
the vorticity field has been a matter of controversy, the name A-vortices sustains

04
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(see section 3.2) .

A OT-WIRE DATA Klebanoff & Tidstrom (1959) and Klebanoff et al (1962) per-

formed detailed hot-wire surveys of the three-dimensional stage of transition.
The earlier experiment" adopted the vibrating ribbon technique but suffered from
the unrest of the three-dimensional phenomena. Spanwise modulations occurred
with a specific wavelength X. while the phase changed erratically with respect to
a fixed hot wire. In the later work, the spanwise phase was controlled by strips
of scotch tape underneath the ribbon spaced according to the wavelength found

-" in the earlier experiments. The repeatability of the signals and careful selection
of what to measure in order to prove or disprove existing theories and concepts
led to a treasure of data that has been exploited uncounted times. However. the
experiments were focused on the qualitative rather than quantitative features of
the nonlinear development. No effort was made to tune the facility to reproduce
the quantitative characteristics of TS waves as predicted by theory.

At sufficiently low amplitude, TS waves of frequency f and wavelength X.
grow and harmlessly decay in the downstream direction. At larger amplitude,
however, a three-dimensional structure evolves whenever the TS amplitude A
exceeds a threshold value of typically 1% of the free-stream velocity U, (A
denotes the nondimensional maximum streamwise rms fluctuation,
.4 U ', /U,). This structure is characterized by spanwise alternating peaks
and valleys, i. e. regions of enhanced and reduced amplitude. A system of
streamwise vortices develops simultaneously with the peaks and valleys. The
growth rate of the wave at the peak positions is much larger than the original TS

-, growth and leads rapidly to the formation of localized high-shear layers at the
peak positions. The periodicity of the flow is consistent with the visualizations of
aligned A vortices. The highly inflectional instantaneous velocity profiles become
unstable with respect to high-frequency disturbances that cause spikes in the
hot-wire signals. The onset of spikes initiates the ultimate breakdown of the
laminar flow into turbulence. The development of three-dimensionality up to the
appearance of spikes occupies about five TS wavelengths, while onset of spikes

and breakdown occur within one wavelength. The virulent disturbance growth in
the three-dimensional stage is in remarkable contrast to the slow TS growth on a
viscous time scale.

Other experiments with controlled TS frequency and spanwise wavelength
were carried out by Kovasznay et al (1962) with various configurations of multi-
pie hot wires. The details of the development were not as clearly revealed as in
the study by Klebanoff et al. There evolved, however, a general consensus on the
various stages of boundary laver transition (Tani 1969) which stimulated and

i guided theoretical work for almost two decades. The equi-shear contours
recorded by Kovasznay et al are still a benchmark for the verification of com-
puter simulations of transition.

THE THREE-DIMENSIONAL STAGE The sequence of events from onset of

I.
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primary instability to turbulence has often been reviewed. Many of the descrip-
tions need revision in today's perspective for the findings of Knapp & Roache
(1968). In addition, one needs to recall the peculiar conditions of the supporting
controlled experiments. Here, we focus on the stages that succeed the onset of
TS waves and their slow growth to amplitudes of the order of 0.5% to 1%. At
this level, three-dimensionality occurs with a spanwise scale similar to the TS
wavelength, X, - , but in a nonunique manner. At lower amplitudes, three-
dimensionality produces staggered patterns of A vortices that at larger amplitude
are replaced by a virtually mixed type and at even larger values by an aligned
pattern of A vortices. This aligned pattern is consistent with peak-valley split-
ting.

The three-dimensional disturbances grow dramatically. Nonlinear deforma-
tion of the flow field produces embedded high-shear layers associated with
inflectional instantaneous velocity profiles. Small-scale, high-frequency velocity
fluctuations (spikes) appear owing to wrinkling of the high-shear layers and
herald the onset of irregular motion or breakdown of the laminar flow.

. 2.2 Early Theoretical Work
0

WEAKLY NONLINEAR MODELS Numerous attempts have been made to
explain the observations of Klebanoff et al (1982) by low-order perturbation
analysis of wave interactions. The interactions were modeled by a composite of

. Orr-Sommerfeld modes with different wave vectors (atk , ) in the plane spanned
by streamwise and spanwise direction. Two groups of models can be dis-
tinguished. Nonresonant models consider the observed wavelength as a given
parameter and study the superposition of a TS wave (a, 0) with two oblique
waves (a. ± 3) (Benney & Lin 1960; Nakaya 1980) or with a longitudinal vortex
mode (0, 3) (Herbert & Morkovin 1980). Stuart (1962) criticized the Benney-Lin
model because the different wave speeds should cause a slow phase change
between the waves, which would contradict the observations. Itoh (1980) has
shown that nonlinear synchronization of the waves may occur in plane Poiseuille
flow. In boundary layers, however, the calculation of the mean flow distortion
and longitudinal vortex components inherent to both models suffers from the
nonparallelism of the basic flow (Herbert & Morkovin 1980). Neither the TS
interaction with oblique waves nor with longitudinal vortices has been capable of
fully reproducing the characteristics of peak-valley splitting.

The second group of models (Raetz 1959; Craik 1971) exploits resonance
between Orr-Sommerfeld modes for selected spanwise wave numbers ± 3". The

prototype of these models is Craik's resonant triad. This triad consists of the TS
wave (a. 0) and two subharmonic oblique waves (a/2, ± Y) with twice the
wavelength X. of the TS wave. Craik found resonance for the experimental con-
ditions of Klebanoff et al (1962) at a frequency of 145 Hz, but his results became
subject to criticism since peak-valley splitting is not associated with subharmonic
waves. The discovery of subharmonic signals in boundary layer transition

.. ." . . . . . . .
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(Kachanov et al 1977) revived the interest in Craik's model. Nayfeh & Bozatli
(1979) found subharmonic resonance at amplitudes of 29% which by far exceed
the observed values and may strain the validity of a low-order perturbation

analysis.
The weakly nonlinear theory suffers from two shortcomings, the first of which

is common to all perturbation methods when applied at a finite value of the per-
turbation parameter. Low order of truncation compromises the judgement
whether this finite value is 'sufficiently small' for rapid convergence of the pertur-
bation series and accurate results. The second problem is the lack of reliable
methods for constructing the model of a vaguely known physical phenomenon, i.

,..: e. to find the right pieces to assemble the puzzle. Intuition alone cannot secure

the relevance and completeness of the modes chosen to interact.
.1'

AN OUTSIDER Beginning in 1968, L. M. Maseev published a series of reports of
the Engineering Institute for Railway Transportation in Moscow. The first report
(Maseev 1968a) was entitled "Secondary Instability of Boundary Layers" - like
this article. Two pages in English translation (Maseev 1968b) sketched lengthy
equations derived with Kantorovich's method. A suspicious solution procedure
provided reasonable thresholds for the occurrence of longitudinal vortices (Figure
4) in the experiments of Klebanoff et al (1962) and near the critical Reynolds

O Inumber. L. M. Maseev never answered my letters, nor could I find him in Mos-
cow. He must have been the first to realize that peak-valley splitting, not the
spikes as thought by Klebanoff et al, are produced by secondary instability and
that this instability originates from parametric excitation in a periodic flow, not
from spanwise differential amplification of the TS wave.

2.8 Recent Progress

EXTERIMENTS The experiments of Nishioka and co-workers (1975, 1980, 1981)
on stability and transition in plane channel flow are a milestone in transition
research. Much pioneering theoretical work has been done on the nonlinear sta-
bility of this strictly parallel flow that allows a clean mathematical treatment.
For a long time. this theoretical work had been overshadowed by the experimen-
tal fact of low ulbcritical transition. Nishioka et al were the first to obtain lam-
inar channel flow at supercritical Reynolds number and to verify the basic results
of linear and nonlinear stability analyses. In this way, they also verified the
methods used for nonlinear studies. Moreover, they found that transition in
channel flow follows the same steps as in boundary layers, and hence established
channel flow as a sensible prototype for transition analysis in wall-bound shear

'. , flows.
The exchange of ideas at the AGARD Meeting 1977 in Copenhagen and the

ILTALNI Symposium on Laminar-Turbulent Transition 1979 in Stuttgart spawned
a new generation of boundary-layer experiments. A survey of these efforts has
been given by Thomas (1986). Kachanov et al (1977) were the first to observe a

a 4Z.........................
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broad peak of near-subharmonic signals in spectra of hot-wire data. More
detailed measurements with lower-than-before ribbon excitation (Kachanov &
Levchenko 1982, 1984: Kachanov et al 1Q85; Saric et al 1984) and flow visualiza-
tions (Saric & Thomas 1984) soon led to a more precise and extended picture of
the transition process.

.Most notable,- perhaps, was the rediscovery and apprehension of the non-
uniqueness of the early three-dimensional stage of transition. Depending on
minute changes of the level of ribbon vibration at otherwise fixed conditions, the
aligned arrangement of A vortices was observed to change into the staggered
arrangement, accompanied by changes in the spanwise wavelength. The spanwise
wavelength of the three-dimensional phenomena was earlier believed to be a
repeatable characteristic of the transition process (Kiebanoff et al 1962; Anders &
Blackwelder 1980). For the first time, Thomas & Saric (1981) associated the
staggered arrangement of A vortices with subharmonic hot-wire signals: the sta-
tionary hot wire records the same conditions for every other wave.

Kachanov & Levchenko (1984) provided controlled conditions by stimulating
the (two-dimensional) ribbon with the TS frequency f I and a superposed lower
frequency f = f 1/2 + A" . For A" = 0, they substantiated the phase syn-
chronization between TS wave and subharmonic wave as required for Craik's
resonant triad. However, the wave angle 0 = tan- '(X, /X ) was different from
the prediction for triad resonance. For A" 3 0, two peaks at frequencies
f 1/2 ± A of nearly equal strength appeared in the spectra.

COMPUTER SLIL'LATIONS Advances in computers and computational
methods enabled rapid progress in transition simulations for boundary layers
(Murdock 1977; Wray & Hussaini 1980) and channel flow (Orszag & Kells 1980;
Orszag & Patera 1981; Kleiser 1982) under controlled conditions. The wealth of
information concealed in the computer output can be extracted with relative ease
which is not true of the data obtained in laboratory experiments. The work on
boundary layers suffers from the inability to specify proper conditions for the
outflow at the nonphysical downstream boundary of the computational domain.
Therefore. transition simulations for boundary layers consider the temporal
development of the flow in a spatially periodic box. Surprisingly, computational
results are strikingly similar to the experimental data up to the stage where
numerical and experimental resolution becomes insufficient. The artificial tem-
poral growth, however, prevents prediction of the transition location - disappoint-
ing some euphoric hopes.

*REVISED CONCEPTS In parallel with the gathering of new observations,

Blackwelder (1979) and Herbert & Morkovin (1980) questioned the traditional
C.. transition picture. Earlier (Klebanoff et al 1962), the occurrence of three-

dimensionality had been attributed to spanwise differential amplification of TS
waves, while the onset of spikes was considered to arise from secondary instabil-
ity. This latter view had often been reiterated and gained trust from theoretical
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work (Landahl 1972). The revised picture considered the onset of three-
dimensionality as manifestation of secondary instability. Herbert & Morkovin
(1980) suggested that three-dimensional disturbances originate from parametric
excitation in the streamwise periodic flow created by the finite-amplitude TS
wave.

PARAMETRIC INSTABILITY Orszag & Patera (1980, 1981) attributed the
exponential growth of small three-dimensional disturbances in their simulations of
peak-valley splitting in a plane channel to a linear stability mechanism and

analyzed the instability of large-amplitude stable equilibrium states in a plane
channel based on a Floquet system. At the same time, Herbert (1981) studied the
instability of (two-dimensionally unstable) equilibrium motions at lower ampli-
tudes in the experimentally relevant range of 0 < A < 0.05. Besides peak-
valley-splitting modes of opposite symmetry, Herbert (1983a) found subharmonic
modes, although Craik's triad is inactive in plane channel flow owing to adverse
symmetry of the wave motion. The universality of secondary instability for vari-
ous shear flows was shown by Orszag & Patera (1983).

The main results of this work are as follows: (i) Three-dimensional secondary
instability can lead to different types of disturbances. Primary resonance with the
TS wave produces peak-valley splitting as the TS amplitude exceeds some thres-
hold. Subharmonic resonance can occur at even smaller amplitudes. (ii) Calcu-
lated disturbance velocities and growth rates are consistent with experiments.
(iii) Secondary instability originates from the redistribution of spanwise vorticity
into streamwise periodic lumps near the critical layer. Growth of three-
dimensional modes arises from combined vortex tilting and stretching. (iv) The
limit A --0 reveals the intricate connection between modes of primary and
secondary instability. This connection provides for the first time a rational means
for evaluating existing and constructing new models of wave interaction.

APPLICATION TO BOUNDARY LAYERS Guided by the nature of the secon-
dary instability mechanism, Herbert (1983b) introduced approximations which
permit application of the theory to the variety of classical stability problems, I
especially to boundary layers. Application of this Floquet theory of secondary
instability to the Blasius boundary-layer flow (Herbert 1984, 1985; Herbert et al
1986) provides results consistent and in good agreement with the work of
Klebanoff et al (1962) and Cornelius (1985) on peak-valley splitting and with the
results of Kachanov & Levchenko (1984) on subharmonic and combination reso-
nance.

UNBIASED COOPERATION The progress during the past decade has been I
achieved by individual efforts. This progress had not been possible, however,
without the open discussions between those involved to the extent that priority
questions are at times difficult to reconcile. Cooperation spanned experimental,
theoretical, and computational work performed by researchers from USA. USSR, I

I1
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Europe, and Japan. Studies of plane Poiseuille flow by Nishioka et al (1984),
May & Kleiser (1985), and Singer, Reed & Ferziger (1986) supported the develop-
ment of the theory for boundary layers. Boundary-layer experiments directed by
V. Ya. Levchenko, V. V. Kozlov, W. S. Saric, A. S. W. Thomas, K. C. Cornelius

* and T. C. Corke (1987, to appear), computations by P. R. Spalart, and the
'.V development of the theory by Th. Herbert (see the text for references) were per-

formed in a fruitful atmosphere of open exchange.

3. FLOQUET ANALYSIS

Key to the successful analysis of secondary instability is the observation that at
the onset of three-dimensionality the flow is no longer of the Blasius type but has

experienced a modulation by the finite-amplitude TS wave. In a coordinate sys-
tem moving with the phase speed of this wave, the flow can be considered as
approximately steady and periodic in the streamwise direction. Analysis of the
linear stability of this modulated flow with respect to three-dimensional distur-
bances, therefore, leads to a Floquet system of linear differential equations with
periodic coefficients. Well-known mathematical properties of such systems (Cod-

• ! dington & Levinson 1955) are exploited to identify form and classes of solutions.
---k Numerical methods provide quantitative detail. This straightforward approach is

obviously very similar to the classical theory of primary instability. The effort
involved in the elaborate formulation and demanding numerical work is rewarded
by a rich variety of solutions with interesting properties.

HISTORICAL REMARK Floquet theory has been widely applied to analyze the
stability of time-periodic flows (Davis 1976). In comparison with the often
dramatic resonances in other mechanical systems, the effect of time-periodicity,
e.g. in plane channel flow is rather mild. The reason is the uniformity of the vor-
ticity distribution as in steady flow. Clever & Busse (1974) solved a Floquet sys-
tem for the instability of steady, spatially periodic convection rolls. In this case,
the effect of periodicity is mild due to the absence of shearing motion. Strong

resonance is caused by the combination of redistributed vorticity with the sur-
rounding shear flow. It seems that Kelly (1967) was the first to apply the Floquet
concept in shear flows; he studied vortex pairing in an inviscid shear layer. Soon
thereafter appeared the long overlooked work of Maseev (1968a, b). A separate
branch of analysis developed for flows with the periodic direction normal to the
mean flow direction (Gotoh & Yamada 1986).

Floquet theory was frequently applied in studies on gravity waves as an alter-
native to the weakly nonlinear theory of resonant wave interactions. In principle,
both approaches should give identical conditions for resonance, provided the
model of wave interaction contains all the waves involved in the physics and the

*.-'. wave amplitudes are small. Floquet theory appears as the more general and more

0.
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powerful method not only for gravity waves but also for boundary layers.

8.1 Formal-Background

DISTURBANCE EQUATIONS The standard procedure of linear stability
decomposes the velocity field v (and pressure p ) into a basic flow v 2 and a dis-
turbance v3 that is sufficiently small for linearization. Substitution into the
Navier-Stokes equations and subtracting the equations for the basic flow (which
we assume to be identically satisfied) provides the linear stability equations

.17' - -2v 2 V)V3 - (v 3  )V2 = P 3

V =0. ()

The basic flow and its derivatives determine the coefficients of the stability equa-
tions. For the analysis of secondary instability, we write the basic flow in the
form

v2.(x',y ,t) = v 0(y ) + A vl(x',y ,t) . (2)

* where v 0 = v0(y) represents the boundary layer flow, A the amplitude of the
periodic modulation, and v, a TS wave for a given set of parameters. We denote
with x'. y , z the streamwise, normal, and spanwise direction, respectively, with

• associated velocity components u, v, w. We normalize v, such that A is a
direct measure for the maximum streamwise rms fluctuation u' . All quantities
are nondimensional using the outer velocity U0 and 6,. = (vL /U,)1/ 2 for refer-
ence, where L is the distance from the leading edge. Consequently,
R (U, L /V)1/ 2 . We change from the laboratory frame x' to a Galilean frame
x moving with the TS phase velocity cr . In this frame, the basic flow is
independent of time and satisfies

v 2 (x,y )=v(X + X,y), X = X- Ct , (3)
I. where XZ is the wavelength of the TS wave.

The choice of the basic flow (2) involves three approximations, the first of
which is well-established in the primary stability theory: the assumption of a
locally parallel flow v0 . The second approximation is the assumption of a locally
constant amplitude A of the TS wave, i. e. the amplitude is assumed to vary
slowly in comparison with the disturbances. This quasi-steady approach blurs the
onset of secondary instability but is well justified in the interesting region of
strong convective growth of the three-dimensional disturbances. The last approx-
imation is the shape assumption, i. e. the neglect of the non-linear distortion of

- the velocity distribution v 1(y) at finite amplitude A . This step is justified by
the weak nonlinear distortion of the u' distribution even at amplitudes of 10%
(Hama. personal communication), and by the vortical nature of the secondary
instability mechanism (Bayly et al 1988). Nonlinearity mainly affects the phase

°.
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of v, but has little influence on the vorticity distribution.

NATURE OF THE SOLUTIONS The linear disturbance equations (1) with v 2
given by (2) are qualitatively different for A = 0 and A 3 0. In absence of the
TS wave, equations (1) form the basis of the classical theory of primary instabil-
ity. Since the basic flow is independent of t, z, and z, the normal mode concept

. can be applied with respect to these variables. After some rearrangement, this
leads to the Orr-Sommerfeld equation for the velocity component v and to
Squire's equation for the vorticity component ?7 (Squire 1933) normal to the
plate.

For A y, 0, equations (1) represent a system of partial differential equations
with x -periodic coefficients. The normal mode concept can still be applied with
respect to z and t and three-dimensional disturbances can be written in the form

,".v3(zX ,z t -- et ei 3v(X , y) (4)

Due to the spanwise homogeneity of the basic flow, we consider the spanwise
wave number '3 = 2,r/X z as real, whereas c = ar + ia i is in general complex.
An important step in developing the theory of secondary instability is the

* !identification of classes and form of V(x ,y ). Insight into the streamwise strlic-
ture of the disturbances is given by the Floquet theory of differential equations

- _. with periodic coefficients: the function V has the general formv(X,y) e 1,V(X,y) V(X + X,,y = " (,Y) (5)

where - - > + i-, is a characteristic exponent, and V is periodic in x with

wavelength X1. Hence, we can express V in terms of a Fourier series and obtain
the general form of three-dimensional disturbances:

v3 = e e e'3  E M,(Y)emax, (6)
m --"CI

where a = 2-r /X. The Fourier coefficients im (y) are governed by an infinite
system of ordinary differential equations. Since the physical solution must be
real, any complex solution v3 implies the existence of a complex conjugate solu-
tion v3. Consequently, the system of equations can be written in a form with
real coefficients.

CLASSIFICATION OF MODES The occurrence of two complex quantities, a
and -y, in the eigenvalue problem for secondary disturbances leads to an ambi-
guity similar to that associated with the Orr-Sommerfeld equation. Only two of

% the four real quantities a, i, 7 -, are determined by the eigenvalue problem
for v 3 ; the other two must be chosen.

We first note that Iy and -f ± ik a yield identical modes for any positive
integer k to within renumbering the Fourier coefficients. Therefore, it is
sufficient to consider - a/2 < -t. < a/2. For convenience, we replace a by
d = a/2 and introduce e -y /&. Distinguishing the three cases E =0, E =1,

- . -." ..
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and 0 < I e < 1 provides the following classification of modes:

Fundamental modes, e = 0:

v" e e= 1 X e e e0if (Xy) M = )(Y)em d (7)
rn even

Subharmonic modes, f - 1:

e e e (X'Y a E %m(Y)e ;MdZ (8)
m odd

Detuned modes, 0 < < 1:
.Vd = eat e -I Xe i'3 i,( M'( + , C , r)

= ~ ~ i OtC C m(Y )eam--ed (9)
m even

The periodic functions if in (7) and i, in (8) satisfy
. if (X + \ ,y Y if (,Y ) (x + 2X , y j,' (x ,y) (10)

The fundamental modes vf are associated with primary resonance in the Floquet
system, while subharmonic modes vs originate from principal parametric reso-
nance. Detuned modes are related to combination resonance. It is obvious from

* equation (9) that the construction of a physical solution requires two complex
conjugate modes with opposite detuning ± f. Consequently, the real disturbance
contains wave numbers m & -y, and the sum of such wave-number pairs
matches the TS wave number. We denote the real disturbance as combination
mode. Owing to the complex conjugate components, opposite detuning ±=-y, in
wave number is conjoint with opposite detuning ± Af in frequency.

GROWTH CONCEPTS The real parts a . and -y, govern the growth of the dis-
turbance with respect to t or x, respectively, and are of prime interest in the
analysis of secondary instability. Similar to Gaster (1962) for primary instability,
we distinguish temporally growing and spatially growing modes of secondary ins-
tability. It is important to recognize that spatial growth of disturbances in the
streamwise direction is measured in the laboratory frame z' and ea t e' =e(0- 7c,)te, ,
e ea ~ ~

Temporal growth requires "Yr = 0. The temporal growth rate is given by a,
while a i can be interpreted as frequency shift with respect to the TS frequency.
Modes with a 0 travel synchronous with the modulated basic flow. The
detuning -1i of the wave number is a given quantity.
.Spatial growth in the laboratory frame requires a, = "Y, cr for suppression of

* temporal growth effects. Hence, -y,. provides the spatial growth rate while -y is
the shift in the streamwise wave number. The detuning of the frequency is given
by the value of a, - ,C.

S.'0
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FOPMAL PROPERTIES Without solving for the modes, we can identify various
characteristics that are consistent with observations. The fundamental modes are
doubly periodic with wavelengths X, and X, like the ordered or aligned pattern
in the flow visualizations of Saric & Thomas (1984) and the flow field during
peak-valley splitting (Klebanoff et al 1962). The aperiodic term v0 in (7)
represents a spanwise periodic mean flow distortion (u0 ) and a longitudinal vor-
tex system (v0 , w0 ). This vortex system is an integral part of the three-

.- dimensional disturbance; it grows simultaneously with the fluctuating com-
ponents and at the same rate. This result is consistent with the observations of
peak-valley splitting, but different from the prediction of the weakly nonlinear
models proposed by Benney & Lin (1960) and Herbert & Morkovin (1980).

Subharmonic modes are doubly periodic with 2X, and X,, and invariant
under the translation (x, z) - (z + X. , z + X, /2), which is characteristic of
the staggered pattern in flow visualizations. In frequency spectra from a
laboratory-fixed probe, linear subharmonic modes produce peaks only at odd mul-
tiples of the subharmonic frequency, not at the fundamental frequency and its
harmonics. Subharmonic modes are not associated with an aperiodic component.
The spanwise variation of the subharmonic disturbance -- cos3z I and the

* I 1800 phase jumps at the positions where cos/3z = 0 is consistent with measure-
ments of Kachanov & Levchenko (1984, fig. 20).

- Nearly equal amplitude of the two detuned modes that form a combination
mode has been observed in controlled experiments (Kachanov & Levchenko 1984,
fig. 19). Equal difference in wave number (or frequency) for different values of m
is consistent with the experiment. It is interesting to note that combination reso-
nance is governed by a linear Floquet system. Occurrence of spectral peaks near
odd multiples of f /2 in the experiments is not caused by nonlinearity.

%. In all cases, the three-dimensional disturbance grows and travels as a whole.
All Fourier components have the same phase speed, as in the experiments of
Kachanov & Levchenko (1984, fig. 21. curves 2, 6, 7). At finite amplitude A,
modes of secondary instability and oblique TS waves are qualitatively different;
they are 'two kinds of animals'.

NT.MERICAL ASPECTS The numerical effort increases from subharmonic
through fundamental to detuned modes provided real systems are used for the
former two. The temporal problem is less demanding since the temporal eigen-

. value a appears linearly in the equations. Primary and secondary stability prob-
lemn can be treated with similar numerical methods. Most of the work yet done
utilized spectral collocation methods with Chebyshev polynomials in y-direction.

"V This method converts the ordinary differential equations and boundary conditions
into algebraic equations. Direct treatment of the boundary value problem is pre-

'-' ferred over shooting methods since it maintains access to the spectra of eigen-
values. Spectra are helpful for reliably identifying the most relevant modes in

* . different regions of the multi-dimensional parameter space and for untangling

@4.,
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their analytical connections. Such help is appreciated when dealing with prob-

lems without prior guidance.
The truncation of the Fourier series involved is crucial for the numerical

work. For subharmonic modes, the lowest possible truncation is I m 1 < 1,
which includes only i_ and il. The lowest approximation for fundamental
modes is I m < 2 and includes - 2, 'o and ' 2 . Detailed numerical studies
(Herbert et al 1986) have shown that the Fourier series converge rapidly, and the
lowest truncation provides sufficient accuracy for practical purpose.

3.2 Portrait of Secondary Instability

Numerical results from Floquet analysis and computer simulations in conjunction
with the few sets of experimental data have developed a consistent picture of
secondary instability. Most of these data are for the Blasius boundary layer.
Studies of other cases (Herbert & Bertolotti 1985) and the physical mechanism of
secondary instability (Bayly et al 1988) promise, however, that this picture is

iN generic for two-dimensional boundary layers in absence of strong concave curva-
ture (G6rtler instability). In the following, we use the frequency parameter
F = 106"at c, /R. and wave number b = 1I/R to specify three-dimensional

0disturbances of fixed dimensional frequency and spanwise wavelength as they
travel downstream. The amplitude of secondary modes is denoted by B. For
convenience, we distinguish three ranges of the TS amplitude: small, A < 0.5%,
medium, 0.5% < A < 2%. and large, A > 2%. Except if stated otherwise, the
results are for temporally growing modes in the Blasius boundary layer.

EIGENVALUE SPECTRA For medium and large amplitudes, the principal. i. e.
most amplified modes of temporal subharmonic or fundamental instability are
associated with a real eigenvalue a. Secondary mode and TS wave are phase-
locked and travel at the same phase speed, in agreement with the observations of
Klebanoff et al (1962) and Kachanov & Levchenko (1984). Synchronization pro-
vides an optimum chance for the transfer of energy into the three-dimensional
disturbance. As in plane Poiseuille flow, a second mode with smaller growth rate

may become unstable. This 'complex mode' is not phase-locked and will be disre-
garded since no evidence for its role in transition has been found.

SUBHARMONIC GROWTH The variation of the growth rate a = a, for the
principal subharmonic mode as a function of the spanwise wave number b is
shown in Figure 5. At very small amplitudes, instability (a, > 0) is restricted to
a narrow band near 6 = 0.18. As A increases, instability occurs in a broadening

* band of spanwise wave numbers. The range of maximum growth shifts toward
larger values of b , and a, decreases nearly linear as b increases. The instability
is sharply cut off at lower wave numbers. Hence, the two-dimensional mode of
pairing instability is suppressed. Vortex pairing has been found only in

pN
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inflectional boundary layers at large amplitudes of the periodic modulation. (Her-
bert & Bertolotti 1985). The maximum growth rates are large in comparison
with the maximum growth rate of TS waves, justifying the quasi-steady approxi-
mation At A = 1%. the secondary mode grows by two orders of magnitude
within less than 6 TS cycles. With the other parameters fixed, the growth rate
a, increases with increasing TS amplitude A as in the experiments of Gaster
(1984, fig. 8) and Kachanov & Levchenko (1984, fig. 2). Unfortunately, the span-
wise wavelength is unknown in both experiments.

The effect of the downstream increasing Reynolds number R on a, is two-
fold. The growth rate a increases with increasing R at otherwise fixed parame-
ters. In addition, the amplitude A increases with R between branches I and II
and thus further enhances the secondary instability. Figure 5 partially explains
the observation of different wavelength by Saric & Thomas (1984). At ampli-
tudes of .4 < 0.3%, subharmonic resonance is restricted to the neighborhood of
b ; 0.18 and results in X i 1.5X . The wider band at higher amplitude levels
permits amplification for larger wavenumbers. The selection of b - 0.4 and
X. ;:Z_1 0.68X, with .4 < 0.4%, however, can only be understood in the light of a

* - nonuniform disturbance background. A similar spanwise wavelength was found
* for the fundamental instability at higher A < 0.7%. The value of b = 0.33

observed by Kachanov & Levchenko at medium amplitudes is well within the
range of maximum amplification.

The important role of the initial amplitude B0 of the three-dimensional dis-
turbance is clearly shown by the experiments of Kachanov & Levchenko (1984,
fig. 15c) and Saric et al (1984) with simultaneous ribbon excitation by the TS fre-
quency and its subharmonic. A linear variation of the phase o between the two
signals results in an amplitude B - I coso I of the amplified subharmonic, pro-
portional to the initial amplitude of the phase-locked component of the ribbon
excitation. The subharmonic mode can lock on in two different phases with
jumps of 180' when coso = 0.

Simultaneous integration of the spatial growth rates of TS wave and subhar-
monic mode with initial amplitudes matching the experimental conditions pro-
vides the data shown in Figure 6 together with the measurements. Except for
the first few points, the streamwise variation of the subharmonic amplitude is
well predicted by the theory. The experimental data for R < 500 were taken in
the region of transient behavior immediately downstream of the ribbon. The
important role of the wave fetch in the formation of the subharmonic disturbance
field has been demonstrated by Thomas (1986). Results similar to Figure 6 were
earlier (Herbert 1984) obtained using the temporal growth concept and the
transformation -f, - a /c,. Detailed comparison of spatial growth rates and
transformed temporal rates as in Figure 7 (Herbert & Bertolotti 1985) verifies
that the restriction of Gaster's transformation to small growth rates does not
apply to secondary instability. The wave propagation properties of secondary
modes are quite different from those of primary modes. Principal subharmonic

j 4
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and fundamental modes travel at a speed independent of the spanwise
wavelength; they are swept along with the TS wave. Bertolotti (1985) has shown
,hat c, is indeed the leading term in the temporal-spatial transformation, with
small corrections by dispersive terms. The surprisingly simple relation between

*-. spatial and temporal growth helps to explain the success of temporal computer
simulations in reproducing the characteristics of spatially developing transition.

K-, H-. C-. AN'D OTHER TYPES To emphasize the distinctive features of the
route to breakdown described by Klebanoff et al, Herbert & Morkovin (1980) sug-
gested that it be called K-breakdown. The attribute 'K-type' found widespread
acceptance. Saric & Thomas (1984) then extended the catalogue by introducing
the attributes 'C-type' for Craik and 'H-type' for Herbert to distinguish two
different mechanisms of subharmonic development. Resonance of Craik's triad
causes the narrow peak of amplification at small amplitudes in Figure 5, while
this peak is absent under other conditions. For these parameters, F = 124,
R = 606, oblique waves with b = 0.18 are unstable owing to primary instabil-
ity even at A = 0. Other modes participate in the wave interaction to minor
extent. At different wave numbers b, however, subharmonic resonance occurs
owing to these other modes and Craik's triad plays a minor role. Study of

: Craik's model (Maslennikova & Zelman 1985) reveals some aspects of the obser-
vations but fails to provide a full quantitative picture. Craik's triad is a valid
but incomplete model of subharmonic wave interaction. The shortcoming is most
clearly shown by the broad-band subharmonic instability of plane Poiseuille flow
(Herbert 1983a) where Craik's triad is inoperative. There, subharmonic instability
originates from Squire modes that were 'forgotten' in weakly nonlinear modeling
since they are always stable. Meanwhile. Nayfeh (1985) found that Squire modes
can strongly interact with TS waves. H-type is the more general type of subhar-
monic instability that may occur in various flows and for a broad band of span-
wise wave numbers. At other parameters, where the sharp peak of C-type reso-
nance disappears, subharmonic instability becomes a threshold phenomenon.
Since Floquet analysis is more general. it reveals Craik's triad when appropriate.
In short, C-type is a sensitive mechanism with many 'ifs and whens'. H-type is a
robust subharmonic instability that needs nothing but periodically concentrated
vorticity in a shear flow, no matter what wavelength, the stronger the better.

Often one is confused by the use of the same name (e. g. haipin vortex) for
different phenomena. Here, we are fortunate to have many names for just two
phenomena. Staggered, subharmonic, C-type and H-type are synonyms for prin-
cipal parametric resonance in the boundary layer. Aligned, fundamental, peak-
valley splitting, and K-type are synonyms for primary resonance.

Two questions remain open. The first is how to name the combination modes
that are most likely to dominate in nature. K for Kachanov would be confusing;
L for Levchenko would honor his contributions over the past decade and the first
description of these modes; S could stand for Santos who developed the theory to
incorporate these modes; or simply E since these modes embrace, embody, enclose

V.,.
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every other type as a special case. The second question is why subharmonic ins-
tability remained concealed for so long.

* ,.- PEAK-VALLEY SPLITTING Growth of secondary modes is only observable and
leads to transition if the initial amplitude of the three-dimensional disturbance is
sufficiently large and the conditions for growth persist for a sufficiently long time
or streamwise distance. Theory predicts that growth characteristics of subhar-
monic and fundamental modes are similar, with the subharmonic being the most
dangerous mode at small and medium TS amplitudes. The key experiments pro-
vide details on different aspects of secondary instability at different frequencies:

F = 58.8: hot-wire data on peak-valley splitting, Klebanoff et al (1962),
F = 64.4: hot-wire data on peak-valley splitting, Cornelius (1986),
F = 83: flow-visualizations of various modes, Saric & Thomas (1984),
F = 124: hot-wire data on subharmonic and combination resonance, Ka-

chanov & Levchenko (1984).
None of the available sets of hot-wire data allows comparison of subharmonic and
fundamental modes at fixed frequency. Figure 8 relates the location of the
vibrating ribbon (or wire) and the range of Reynolds numbers studied in these

* experiments to the stability diagram for Blasius flow. According to Floquet
- analysis, peak-valley splitting is likely to occur at lower frequencies since it needs

stronger TS growth to produce larger amplitudes. (By the way, the Strutt
diagram for the lathieu equation with damping shows the same qualitative
features.) An analysis of fundamental modes has been performed by Herbert
(1985) for the experimental conditions of Klebanoff et al. This analysis revealed
two discrepancies. First. the streamwise growth of the TS wave in the experi-
ment is not in agreement with the predictions of linear stability theory. Dr.
Klebanoff explained to me that, at the time of this experiment, emphasis was on
a description of the nonlinear and three-dimensional phenomena in transition; the
characteristics of linear TS waves were already verified in the work of Schubauer
& Skramstad. Second, the calculations indicate that subharmonic instability
should have prevailed in this experiment if the background amplitudes for funda-
mental and subharmonic modes were equal. The experiments were conducted in
a similar region of the stability diagram as the studies of Kachanov & Levchenko
on subharmonic resonance. The experimental arrangement of Klebanoff &
Tidstrom (1959), however, and especially the spanwise spacers on the plate sur-
face beneath the ribbon in the later work enhanced spanwise periodic mean-flow
variations and disturbances of the longitudinal vortex type. In Poiseuille flow,
longitudinal vortices and pure spanwise modulations of the mean flow (degenerate
Squire modes) are the ingredients for the resonant mechanism of peak-valley
splitting. In boundary layers, such modes are concealed in the continuous spec-
trum but pop out to contribute to the formation of fundamental modes. K-type
three-dimensionality, therefore, seems to develop only under specific cir-

" '"cumnstances.

A comparison of subharmonic and fundamental growth rates is given in

Op
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Figure 9. The lines represent theoretical data while the symbols were obtained

from computer simulations of transition in a temporally growing boundary layer
by Spalart & Yang (1986). The systematic deviation reflects approximations in
both theory and computation. The common conclusion is that subharmonic
modes are more unstable than fundamental modes, at least for wave numbers
near maximum amplification. The computer simulations show that even at large
TS amplitudes pure peak-valley splitting cannot be obtained from a uniform or
random disturbance background.

Herbert (1983b) has blamed the biased conditions in wind and water tunnels
for the distorted perception of transition in channel flow. Measures to calm down
the noisy flow in tunnels commonly involve a settling chamber and strong con-
traction. The large contraction ratio converts most of the residual disturbances
into streamwise vorticity. This vorticity, on the other hand, favors the fundamen-
tal mode of secondary instability. Clear evidence for this preference are the com-
puter simulations of Singer at al. (1986) for Poiseuille flow. By introducing small
longitudinal vortices in the initial conditions, the otherwise subharmonic develop-
ment was suppressed and peak-valley splitting occurred, H-type switched into K-
type. To provide data for quantitative verification of theoretical results, Cornelius

* t(1985) studied peak-valley splitting at a frequency close to that of Klebanoff et al
but further upstream of branch II (see Figure 8). By placing spanwise spaceri at
different distance, Cornelius documented the three-dimensional development for
3 = 0.24 and 3 = 0.48 and hence experimentally verified for the first time the
broad-band nature of fundamental instability. The accuracy of these data does
not permit the parallel-flow approximation in theoretical work and detailed com-
parison awaits its turn.

LOSS OF SELECTMTY The theoretician who relies on the rigid basis of classi-
cal mathematics, and in his numerical work, on increases in raw speed and
memory of computers, recognizes stunning progress in experimental techniques.
More sophisticated flow control in wind tunnels, computer-controlled data
acquisition and data reduction have reduced the irritating bias of earlier experi-
ments. What appeared repeatedly as a selectivity of the transition mechanisms
has been a selectivity of the experimental apparatus. The attempt of Anders &
Blackwelder (1980) to vary the characteristic spanwise spacing of the K-type field

16 was unsuccessful owing to a concealed source of streamwise vortices with a pre-
ferred spanwise scale.

The portrait of secondary instability would be incomplete without a glance at
combination modes. These modes travel in general with a speed different from
the TS wave speed and, as a team, lead to a beating hot-wire signal as it has
been seen by Kachanov & Levchenko and Thomas & Saric. For small ampli-
tudes, Santos & Herbert (1986) found a broad peak of amplification for detuned
modes in the neighborhood of the subharmonic mode, c z 1. This nearly even
amplification of modes in a whole range of streamwise wave numbers or frequen-
cies is consistent with the observation of a broad peak centered at the

"V.
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subharmonic frequency in the various experiments (Thomas 1986). The width of
this peak varies with the amplitude A and flattens out into a plateau of almost
uniform amplification at larger amplitudes, as shown in Figure 10.

From the parametric dependence of the growth rates which appear to be well
predicted by the Floquet theory, we may draw the following conclusions for an
environment with controlled TS frequency but random three-dimensionalitv: At
extremely small initial TS amplitude at branch I, TS waves grow and decay
according to primary stability characteristics. At small 4 . C-type instability
occurs near branch I with a specific spanwise wavelength typically larger than
the TS wavelength. As the branch I amplitude further increases, amplification
broadens in a range of near-subharmonic frequencies with a tendency toward
larger spanwise wave numbers. Ultimately, at large amplitudes the 'black box' of
secondary instability amplifies whatever the background provides, no matter
whether subharmonic. fundamental or detuned, in an extended range of spanwise
wavelengths of order 0 lXz ).

Within a linear framework, the phenomena arising from a mixture of different
TS frequencies are a superposition of the above with proper account for the

-," downstream shift of branch I. In a low-noise natural environment, then, the
preference of primary instability for two-dimensional waves may still support
secondary instability on a modified planform of oblique and bent vorticity con-
centrations with less regular spacing accumulated in wave packets. In noisy
environments, however, the TS mechanism is no longer needed and may be
bypassed. preexisting vorticity concentrations of irregular spacing and orientation
combined with the mean shear directly activate the processes of vortex tilting
and st-etch'ing (Bayly et al 1988) that lead to transition. Verification of these

-• latter conclusions may be a challenging target for computer simulations. Most of
the present boundary-layer codes are restricted to a computational domain one or
two X. long and X wide and therefore do not allow for studies on the selection
and interaction of waves. The wider domain in Spalart's code (Spalart & Yang
1986) is an exception. Small domains, however, permit great detail in resolving
breakdown (Krist & Zang 1987). I
VELOCITY PROFILES Returning from speculation to the factual results of the
Floquet analysis, it is revealing to closely examine the distribution of the stream- ,
wise velocity normal to the wall shown in Figure 11 for the various modes. All
modes show maximum activity slightly above the critical layer for the TS wave, ",

the center of Kelvin's cats eyes in the moving coordinate frame, and rapid decay .1
toward the edge of the boundary layer. The detailed power spectra Gaster (1984)
obtained at the edge of the boundary layer severely underestimate the strength of
combination resonance at lower distance from the wall. The distinct frequency
allows direct measurements for subharmonic (and combination) modes. The com-
parison between results of Kachanov & Levchenko and theory is shown in Figure r
12. The fundamental mode is usually observed in superposition with the TS
wave and discerned by comparison at spanwise positions X, /2 apart. as in Figure

LA A



-21-

13. Besides the streamwise fluctuations, mean-flow distortion, the longitudinal
vortex system, and spanwise fluctuations are consistent with available hot-wire
data.

COMPUTER VISUALIZATION Knowledge of the velocity field in the various
stages of transition permits constructing data for conclusive evaluation of hazy or
controversial concepts or connections. One of the first applications is the repro-
duction of the patterns of various modes in flow visualizations by computer-
animation based on the theoretical data (Bertolotti et al 1986). The motion pic-
tures show the development of particle lines released from a 'smoke wire' at

* "different times and locations. Obviously, the staggered subharmonic pattern and
the aligned fundamental pattern can be reproduced, and for the conditions of the
experiments, the first indication of spanwise structure leads within about five TS
cycles to a dramatic stretching of the particle lines which to describe is beyond
the power of a linear analysis. The pictures vary sensitively with the distance of
the smoke wire from the wall, especially when passing through the critical layer.
The appearance of the A vortices changes with the different history of the parti-
cle field when the smoke wire is moved downstream (Bertolotti & Herbert 1987,
in preparation). Two instantaneous pictures of a strongly detuned combination
mode (e = ±0.5) are shown in Figure 14. The pattern resembles the staggered
or the aligned mode depending on the phase relation to the TS wave. Many of
the observed 'mixed' patterns are likely to involve competing combination modes
of different spanwise wavelength.

A VORTICES The second application of velocity fields is borrowed from the
world of computing: are the A's really vortices? Reconstruction of the flow field
from hot-wire data by Williams et al (1984) supports the vortex concept.
Analysis of numerical data bv Kleiser & Laurien (1985) shows only a dislocation
of vortex lines along the legs of the A while Zang & Hussaini (1985) agree with
the general features depicted by Williams et al. Recent all out efforts of Krist &
Zang (1987) aim specifically at the origin of the At's. there called 'hairpin vor-
tices'. High-resolution runs for K-type and H-type transition at different Rey-
nolds numbers produce similar vortices: the streamwise and spanwise vorticity
fistributions conform with the measurements of WAilliams et al (1984). The AVs

are vortices, as shown in Figure 15.

3.3 Go" rtler Vortices and Cross-Flow Vortices

, The success of the Floquet theory in explaining the secondary instability excited I
by TS waves suggests to search for other applications. If one limits this search to

boundary layers, counter-rotating G~rtler vortices in the flow over concave sur-
faces and co-rotating cross-flow vortices in three-dimensional boundary layers are
the two prime candidates. Primary and secondary instability and the relation to
transition for these two cases have been reviewed by Saric & Reed (1987. to
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appear) with the conclusion that many questions remain to be solved.

GORTLER VORTICES The G6rtler instability is of centrifugal nature and
governed by the streamline curvature of the flow with stabilization by viscosity.
Nayfeh (1981) found by a weakly nonlinear method strong double-exponential
growth of oblique TS waves in presence of finite-amplitude G6 rtler vortices.
Srivastava (1985) obtained with similar methods significant but less dramatic
amplification while computer simulations by Malik (1986) were unable to repro-
duce Nayfeh's result.

In the light of the Floquet theory, the disturbances can be written as

"' v 3(Xy , e,t) = e Yt e ax(y,z) (11)

where spanwise homogeneity requires -y,. = 0, and a, = 0 for the streamwise
growing disturbances. Special solutions are traveling waves -exp(i a X +1 a , t ).
The streamwise amplification rate a, is expected to be small owing to the uni-
form vorticity in the mean-shear direction. An inviscid model of the instability
mechanism rests on the tilting of the vortices and their images which is governed
bv Biot-Savart's law. Some vortex stretching will occur and the shear flow will

* fold and sweep away the bows, enhancing the longitudinal vorticity. The strQng
stretching effect that reorients preexisting vortex filaments, however, is missing.
Since interaction happens between neighboring vortices of opposite sense, the
break of symmetry is governed by two fundamental modes of different spanwise
phase. X. /4 apart. In both cases each single vortex meanders downstream. All

*: vortices wind synchronously in one case, out of phase with their neighbors in the
other. The former motion is similar to wavy Taylor vortices and is more likely to
appear than the latter which involves deformation besides bending. The
occurrence of subharmonic modes seems to be largely precluded by topological
reasons. The generation of small scales and high frequencies for breakdown is
likely to be associated with localized high-shear layers that develop from the
uplift of low-momentum fluid between vortices (Hall 1986).

Floquet analysis of the secondary instability of G6rtler vortices with the
assumptions introduced in section 3.1 will be of qualitative character. Not only
has Hall (1983) shown that the streamwise variation of the boundary layer
prevents application of the normal-mode concept, but the growth of the vortex
amplitude (%lalik 1986) cannot be considered small in comparison with the
growth rate of secondary modes.

CROSS-FLOW VORTICES The catalogue of mean flows with important cross-

flow instability ranges from the boundary-layer flow over a rotating disk through
flows over spinning axisymmetric bodies to the flow over swept wings. These
cases are ,listing'iished by decreasing angle 0 between the vortex axes (in g direc-
tion) and the x direction of the potential flow. Observation and physical intui-
tion suggest that x is the proper direction for the growth of primary and secon-
dary instabilities and development toward transition - x means downstream.

o4
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Since cross-flow instability may cause transition in swept-wing flows before the
competing TS instability develops, this flow of practical interest has been chosen
to study secondary instability of basic flows with cross-flow vortices. In this flow,
the angle 0 is small, say 3. Reed (1985) applied the method of multiple scales
to analyze the interaction with oblique waves. Reed (1984) and Fischer &
Dallmann (1987) used Floquet analysis to find temporal growth rates of secondary
modes. The two more recent studies agree about the tendency toward a rising
second harmonic in the Floquet direction normal to . Fischer & Dallmann
found growth rates of subharmonic, combination, and fundamental modes with
different wave numbers in lower than the (neglected) growth rate of the cross-
flow vortices even at amplitudes of 6.9%. A strong instability has not yet been
discovered.

The cross-flow instability over swept wings is caused by a small inflectional
velocity distribution normal to the potential flow. The primary disturbances
draw their energy from this weak component. Stretching of the z-vorticity com-
ponent by non-parallel effects may have a first order effect on the primary growth
(Morkovin 1983). As for G6rtler vortices, the orientation of the disturbance vor-

*, ticity in the mean flow direction may prevent strong instability from occurring.
Along which path the main body of the flow feeds enough energy into the distur-

0bances to cause transition remains an open question.

4. SECONDARY INSTABILITY AND TRANSITION

Floquet analysis of linear secondary instability supported by computer simula-
t'ons has certainly increased our insight into the transition mechanism and the
capability of predicting the quantitative characteristics of the early three-
dimensional stages of transition. However, it has not yet improved the capability
of predicting transition in practice. Two ingredients are missing for such predic-
tion. The first ingredient is the frequency and amplitude composition of the
noisy background which is hardly measurable. Reasonable assumptions, empiri-
cal data. and receptivity studies may alleviate this lack. The second missing ele-
ment is a quantitative criterion for the conditions that lead to self-sustained I
growth of three-dimensional disturbances. Linear theory is unable to provide this
ingredient.

In a linear framework, secondary instability leads a parasitic existence on the
TS waves. Secondary modes may grow but will harmlessly decay as the vital
vorticitv concentrations fade away. This decay is clearly shown in Figure 16
reproduced from Kachanov & Levchenko (1984) at low levels of the amplitude A I
At higher amplitude levels, however, the stronger growth leads to three-

* dimensional amplitudes B large enough to affect the two-dimensional wave
development. Nonlinear interaction prevents the decay of the signal at the TS
frequency. Primary and secondary disturbances join in a rapid evolution toward
breakdown. Similar curves were obtained from transition simulations (Spalart &

A. * . ~ * *
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Yang 1986).

4.1 Energy Balance

Investigation of the energy balance is a first step into exploring the nonlinear
interaction between the components of the flow field. The main path of energy
transfer which leads directly from the mean flow into secondary modes was
identified earlier by Orszag & Patera (1983); the TS wave plays only a catalyst
role. Croswell (1985) used solutions from Floquet analysis and studied the energy
transfer between mean flow v0 , two-dimensional wave A v, and three-
dimensional disturbances B v 3 in plane Poiseuille flow at a fixed time, i. e. for
fixed amplitudes A' and B . Herbert (1986) reports some results of this study
which show an interesting spatial distribution of the energy transfer and give a
first lead toward insight into the feedback loop of self-sustained growth.

SPATLkL DISTRIBUTION For unstable TS waves, the distribution of the
power in the x. y plane shows shallow extrema near the critical layer, spreads far
away from the wall, and is periodic in x with wavelength X, /2. Averaging in the
streamwise direction provides a sharp peak at the critical layer. Integration nor-
mal to the wall yields the small positive growth rate (multiplied with twice the
energy of the TS wave). For fundamental and subharmonic secondary modes,
the picture changes drastically. The spanwise averaged power has sharp oval
peaks near the center of the cat's eyes, a clear indicator for the close association
between vorticity redistribution and secondary instability. Though less obvious,
a similar concentration of the streamwise averaged power can be seen in the y , z
plane normal to the mean flow direction. A more detailed scan reveals that the
energy transfer into secondary modes is confined to shallow ellipsoids centered
above the critical layer and at the positions where the deflection of the distri-
buted spanwise vortices is strongest.

The observation of this highly localized energy transfer stimulates some
abstraction. The tie to the critical layer stems from creating the distributed vor-
tex array by a TS wave. Such an array created in another way at a different dis-
tance from the wall and convected with the local mean velocity will behave simi-

-. lar to within changes in shear and viscous effects. Because of the broad-band
onature of the secondary instability, spanwise periodicity of the three-dimensional

disturbance will not be necessary. A single twist or kink may be enough to give
birth to a patch of A vortices. Small curvature, small variation in strength, i:id
finite spanwise extent of the vortices like the crests of a wave packet will barely
cause dramatic changes. The spanwise and streamwise periodicity is essent'al for
the pattern formation and distinction of various modes. The streamwise
wavelength determines the spanwise scale of the pattern. However, the pattern is
not vital to transition. Should not a single vortex convected with the local mean
velocity and exposed to a single kink reveal the dynamics of the early stages of
transition? Stuart (1965) studied peridic disturbances of a single vortex and

2.I. 0,,".4
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found scales similar to those in the experiments of Klebanoff et al (1962). More
understanding of this subject might reveal the secret of 'bypasses'.

A FEEDBACK LOOP The global energy balance was studied by Croswell (1985)
at amplitudes in the range of 1% and with the shape assumption for the basic

* .. flow. His findings are summarized in Figure 17. (1) For unstable TS waves, the
transfer of energy from the mean flow to the two-dimensional wave is weak owing
to the viscous mechanism; a considerable part of the gained energy is dissipated.
(2) At sufficiently large amplitude A, the two-dimensional wave leads to
parametric excitation of three-dimensional modes. (3) This excitation causes
strong energy transfer from the mean flow into the three-dimensional wave. One
part of this energy is dissipated, a second part increases the amplitude B of the
three-dimensional wave. Steps two and three agree with results of Orszag &
Patera (1983) for the instability of large-amplitude periodic motions. (4) A third
part of the gained energy is transferred into the two-dimensional wave. This
component draws off a minor amount of the three-dimensional growth but boosts
the modest energy budget of the two-dimensional wave; the gain in growth rate is
proportional to B 2 /A . (5) Once B has attained a sufficiently large value, the

* 1 energy of the two-dimensional wave can increase even if the TS mechanism fails
to support this growth. This result is consistent with computational results of
Spalart & Yang (1986). (6) Provided the gain in energy maintains the vital cata-
lytic effect of the earlier steps, it enhances the parametric excitation. (7)
Parametric excitation of three-dimensional disturbances by the two-dimensional
field they create would establish a positive feedback loop and lead to self-
sustained simultaneous growth of two-dimensional and three-dimensional waves.
Existence of such a loop is supported by experience, experiment, and computa-
tion.

4.2 Threshold Conditions for Self-Sustained Growth

The energy analysis of Croswell involves approximations and neglects nonlinear
effects such as the distortion of the velocity profiles and the generation of har-
monics. Crouch & Herbert (1986) study a model of the nonlinear interaction
based on an expansion about the periodic basic flow of a given amplitude A .
The interaction model consists of two modes of secondary instability the first of
which is two-dimensional. This mode describes the instability of the basic flow in
a strictly two-dimensional framework. The other mode is either a subharmonic
or fundamental mode of three-dimensional instability. Similar to the energy
analysis, the expansion yields up to second order the amplitude equations

- =d a + a4 2+ a=B2  - bB + bIB (12)
dt dt

where A = A - A, and a 0 and b0 are the linear growth rates of the secon-
dary modes. The parametric effect of A on the three-dimensional growth rate is

...
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represented by b 1 > 0. The unusual self-interaction of the two-dimensional
mode at second order is caused by the periodic character of the basic flow, and
a I is of minor importance. Of prime interest is the coefficient a2 which incor-
porates the effect of the three-dimensional disturbance on the two-dimensional
mode. In accordance with the energy analysis, this effect is proportional to B 2,
and a, is expected to be positive and large in comparison with I a, whenever

2"- A is sufficiently large. Hence, the two-dimensional mode will always grow if
a 0i + a 1A 2 > 0. Otherwise, it will grow only if B exceeds the threshold value
B t , where Bt 2 = -(aoA + alA 2)/a 2. Numerical results of this study will be
reported by Herbert (1987).

5. Concluding Remarks

The past decade has seen important progress in the exploration of the three-
dimensional aspects of transition in boundary layers. Experiment, theory, and
computation have contributed their share and taken their profit. Perhaps, the
most significant progress is the consistency of the current picture of transition as
it evolves from the ribbon-controlled background. Much work remains to be
done to relax this and other restrictions that made the methods successful. The
downstream changing conditions in boundary layers demand wider application of
the spatial growth concept in theory and computation, especially when dealing
with resonant interactions. The Floquet theory of secondary instability has
revealed great potential in coping with the periodic flows that frequently evolve
from primary instability. However, the assumptions inherent to this theory are
not always easy to satisfy. Finding the key to transition caused by G6 rtler vor-
tices or crcss-flow vortices is still a challenge. Exploration of the nonlinear level
of secondary instability is in an infant stage. When looking at tertiary instabil-
ity. wave packets, and other localized phenomena, our tools seem not as powerful

S ~as we would like them to be. We have learned a lot, however, and this review is
not the final report on transition in boundary layers.
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-* Figure Captions

Figure 1 Smoke-flow visualization of transition in the boundary layer over an
axisymmetric body. Photograph by F. N. M. Brown. (Courtesy of
the University of Notre Dame).

Figure 2 Staggered pattern of A vortices. (Courtesy of J. T. Kegelman).

Figure 3 Aligned pattern of A vortices. (Courtesy of W. S. Saric).

Figure 4 Threshold amplitudes A for the onset of three-dimensionality with
spanwise wavenumber a in the boundary layer. Curve 1:
R = 1203, a = 0.43, curve 2: R = 519, a = 0.27. (Maseev
1968b).

Figure 5 Subharmonic growth rate a, as a function of the wavenumber b
for F = 124, RI, = 606. (Herbert 1984).

Figure 6 Amplitude growth with the Reynolds number R at F = 124. (A)
TS wave with A 0 = 0.0044, (B) subharmonic mode with
B 0 = 1.26.10- 5, b = 0.33. Comparison of the theory (- ) with
experiments (x, o) of Kachanov & Levchenko. (Herbert et al 1986)

Figure 7 Spatial growth rate -y,. vs. spanwise wave number 3 for the princi-
pal subharmonic mode. Results of (a) direct calculation and (b)
transformation of temporal data. R = 826, F - 83, A = 0.02.
(Herbert & Bertolotti 1985).

Figure 8 Stability diagram for the Blasius boundary layer and ribbon posi-
tions (+). The horizontal lines indicate frequency and Reynolds

number range in the experiments.

Figure 9 Growth rate of three-dimensional disturbances as a function of the
spanwise wavenumber 3 for F = 58.8, R = 950, and A = 0.014.
Theory: (a) subharmonic, (b) fundamental. Computation by
Spalart (1986): (o) subharmonic, (x) fundamental.
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Figure 10 Growth rate a. for detuned modes at F = 124, R = 606,
A = 0.01, b = 0.33. Subharmonic and fundamental modes
correspond to & = a/2 and a, respectively.

Figure 11 Normalized streamwise velocity components. Subharmonic mode,
c = I (left), detuned mode c = 0.5 (middle), fundamental mode
e = 0 (right). R = 606, & = 0.1017, A = 0.01, 3 = 0.2.

Figure 12 Normalized u'-distribution of the subharmonic mode at F = 124,
.. R = 608. .4 = 0.0122, and b = 0.38. Theory (- ) and experi-

ment (o) of Kachanov & Levchenko.

Figure 13 Distribution of u' across the boundary layer for F = 58.8,

b = 0.243. and R 960. Theory: (a) peak, (b) valley. Experi-
ment of Klebanoff et al: (o) peak, (x) valley.

- Figure 14 Computer visualization of combination resonance at two different
phases with respect to the TS wave.

Figure 15 A vortices in plane Poiseuille flow shown by the streamwise vortici-
ty component at R = 1500. K-type (left) and H-type (right).
(Krist & Zang 1987).

Figure 16 Amplitude growth curves for disturbances at different levels of the
TS amplitude. (o) fundamental frequency f , A 0 = 0.00163, (+)

subharmonic frequency f / 2, A 0 = 0.00163, (.) f
A 0 = 0.00654, (x) f / 2, .40 = 0.00645. After Kachanov &
Levchenko (1984).

Figure 17 Schematic of the energy transfer between mean flow v0 , two-
dimensional wave v1 , and three-dimensional disturbances v3
(- ), and catalytic effect of v, ( -...-). The numbers refer to the
text.
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...'.'.'.'Figure 2. Staggered pattern of' A vortices. (Courtesy of J. T. Kegelman).
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... Figure 3 Aligned pattern of' A vortices. (Courtesy of W ,. S. Saric).
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Figure 4 Threshold amplitudes A for the onset of three-dimensionalitv with

spanwise wavenumber o in the boundary layer. Curve 1:

R = 1203, a = 0.43, curve 2: R 519, aC - 0.27. (Maseev

1968b).
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Figure 5 Subharmonic growth rate ',. as a function of the wavenumber b
for F = 124, RI- 606. (Herbert 1984).
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Fi lire 6 Amplitude growth with the Reynolds number R at F - 124. (A)
TS wave with A 0 = 0.0044. (B) subharmonic mode with
B 0 = 1.26-10- . b = 0.33. Comparison of the theory (- ) with
experiments (x, o) of Kachanov & Levchenko. (Herbert et al 1986)
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Figure 7 Spatial growth rate -y, vs. spanwise wave number 3 for the princi-
pal subharmonic mode. Results of (a) direct calculation and (b)
transformation of temporal data. Re =826, F =83, A =0.02.

(Herbert & Bertolotti 1985).
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Figure 8 Stability diagram for the Blasius boundary layer and ribbon posi-
tions (+). The horizontal lines indicate frequency and Reynolds
number range in the experiments.
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i Figure 9 Growth rate of three-dimensional disturbances as a function of the,

spanwise wavenumber 3 for F = .58.8, R - 950, and .A = 0.014
Theory: (a) subharmoni, (b) fundamental. Computation by

"- ~Spalart (1986): (o) subharmonic, (x) fundamental. o
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1:~r.13 Distribution of u' across the boundar-y layer for F
6 = 0. 213adfRe =960. Theory: (a) peak. (b) valley. Experi-

mi-n ,fKleanof etal:(o)peak, (x) valley.
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